
Ito

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 124
1113111111 riii 1f11 Al I ii I

".................

94-25251 UG111991'

THESIS
Modeling and Simulation of a Fiber Distributed Data Interface

Local Area Network (FDDI LAN) Using OPNET for
Interfacing Through the Common Data Link (CDL)

by

Ernest E. Nix, Jr.

June 1994

Thesis Advisor: Shridhar Shukla

Approved for public release; distribution is unlimited.

DTIC QUwiITY 1i4 1T PECMF-LD

94 8 10

REPORT DOCUMENTATION PAGE Form ApovdOM No. 0704,0188

sourcs.hpmnng ad maintainmll the daba nowled, and completing and reviewing the Collection of information Send comment mgardinS this burden esimate or may ei
aspect of this collection of information, including sugetin for reducing this burden, to Washington heaqurtr Services, Directorate for Information Operstton
Reports 1215 efiamin Davis H1ighway, Suite 1204. Arlington, VA 22202-4302Z and to the Office of Minsiement and Budget, Papawark Reduto Projec (0704-.0188

AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1994 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
MODELING AND SIMULATION OF A FIBER DISTRIBUTED DATA INTERFACE LOCAL
AREA NETWORK (FDDI LAN) USING OPNET" FOR INTERFACING THROUGH THE
COMMON DATA LINK (CDL)

6. AUTHOR(S)
Ernest E. Nix. Jr.

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER:
Monterey CA 93943-5000

9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER:

I I SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the
-- U.S Government.

"" 2a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release: distribution is unlimited.

13 ABSTRACT (maximum 200 words)
The Optimized Network Engineering Tool (OPNET*) is a commeriath' available communications network simulation package. This thesis
involves the modification of OPNET's Fiber Distributed Data Interface Local Area Network (FDDI LAN) model in order to enhance its usefulness
as an aid in the develpmet of recomindations for the ch€mctenmcm and metnrs to be eventually included in the Defense Service Project Office's
(DSPO) Common Data Link (CDL) project. This work includes a step-by-ep guide for FDDI simulation in OPNET, and a discussion of th.
changes made to the original model to enhance its performance and data displav charactenrscs. Simple tests are provided to verify the completed
moders performance and usefulness as a working tool for further development

14. SUBJECT TERMS 15. NUMBER OF PAGES:
FDDI, SYNCHRONOUS. LAN, SIMULATION, MULTICAST 213

16. PRICE CODE

17. SECURITY CLASSIFICA- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFICA- 20. LIMITATION OF
TION OF REPORT CATION OF THIS PAGE TION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Presmbed by ANSI SW 239-18

Approved for public release; distribution is unlimited.

Modeling and Simulation of a Fiber Distributed Data Interface Local Area Network
(FDDI LAN) Using OPNET for Interfacing Through the Common Data Link (CDL)

by

Ernest E. Nix Jr.
Lieutenant, United States Navy

B.S. Ed. University of South Carolina, 1985

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
Monterey, California

June 1994

Author: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Ernest E. Nix, Jr.

Approved by: ___________

Shridhar Shukla, Thesis Advisor

W- Mic el A. Morgan, C
Department of Electrical and Computer Engineering

ii

ACKNOWLEDGEMENTS

The author gratefully acknowledges the efforts of those whose assistance made this

thesis achievable: Dr. Shridhar Shukla, who provided guidance, support and motivation;

MUL 3, Inc. Technical Support Staff who were available days, nights, weekends and

holidays, and treated every question seriously, regardless of content; Mr. James "The

Wizard" Scott, thesis preparer extraordinaire, who perfonned miracles on request, and

Mrs. Hernestina NMm who never once complained.

OPNETI is a registered trademark of MIL 3 Inc.

BONeS* is a registered trademark of Comdisco Systems, Inc.

Accession For /

NTIS .7R&
DTIC T.',,'-
Unann-,=-:ed L

By __ -_
Distribut i '..

Availllbl.11t7 "0400

Dish •. L•

ABSTRACT

The Optimized Network Engmeeing Tool (OPNET) is a comma cially available

communicaton network simulation package. This thesis involves the modification of

OPNEIs Fbm Dismibued Data Jnwfce Local Area Network (FDDI LAN) model in order

to enhance its usefidness as an aid in the development of recommendations for the

characteristics and metrics to be eveantally included in the Defense Service Project Office's

(DSPO) Common Data Link (CDL) project. This work includes a step-by-step guide for

FDDI iWlation in OPNET, and a discussion of the changes made to the original model to

enhance its performance and data display characteristics. Simple tests are provided to veri

the completed model's pefornme and usefulness as a working tool for further development.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1
A. PROBLEM STATEMENT I
B . SCOPE . 2
C. BENEFITS 2
D. ORGANIZATION 3

II. MODELING AN FDDI LAN IN OPNE 4
A. OVERVIEW 4
B. PRELIMINARY THEORY 5

1. Theoretical vs OPNET Model of FDDI 5
2. FDDI LAN Equation Parameters 8

a. "F M ax" . 8
b. "D M ax 9
c. "S 1 " . 10
d. "TTRT" .11

C. MODEL STRUCTURE 11
i. FDDILAN 15
2. FDDI Station 17
3. Processes . 19

a. Source Node 24
b. Sink Node 26
c. Medium Access Control (MAC) 27

4. Packets .30
a. ICI Formats 30
b. Packet Formats 33

5. Environment File 33
a. "station-address" 34
b. "rin jid" .. .35
c. "low dest address" 35
d. "high dest address" 35
e. "arrival rate" 35
£ "mean_.pk .Ien"....................... 36
g. "asyncmix" 36
h. "sync bandwidth" 36
i. "T _Req" .. .38
j. "spawn station" 38
k. "station-latency" 38

v

I. "prop delay"38
m. "accelerationtoken" 39
n. "duration"39
o. "vertose sim" 39
p. "upd -nt .39
q. "osfile" 39
r. "ovfile" 40
s. "seed" 40
t. "debug" 40

D. SIMULATION 41
1. Build the LAN 41
2. Correct "OPBUG 2070 " 41
3. Impleme "OPBUG 2081" Patch 41
4. Update Environmet Fil 41
5. Generate Probe File 42
6. Simulation Editor. 42
7. Start the Simulation 45
8. Analysis 45
9. Debug Tool 47

IlM. MODEL MODIFICATIONS 50
Ak OVERVIEW 50
B. PRIORJTIZATION 51

1. Activating Prioritization in OPNET's FDDI Model 51
2. Changing the Scheme and the Code 53
3. Subqueu s. 53

a. "RCVTK" 54
b. "IX DATA" 55

4. Modifications to Prioritization 57
a. Station Model Changes 58
b. Environment File Changes 60
c. Source Modifications 61
d. MAC Modifications 63
e. Sink Node Modifications 64
f. Packet Format 64

C. PERFORMANCE MEASURES 65
I. Overview .65
2. Variables .67
3. Initialization State 68
4. "DISCARD" State 70
5. "STATS" State 72

D. BRIDGE LINK 73
1. Station Model Modifications 74

vi

2. Process Model Modifications 75
E. MULTICAST 77

1. Overview .77
2. Environment File 79
3. Station M odel 80
4. Source Process Model 81

a. Variables .81
b. Initialization State 83
c. "ARRIVAL" State 84

5. MAC Process Model 86
a. Variables 86
b. E c ton State 86
c. Frame Repeat State 87

6. Limitation 90

IV. MODEL TESTING 91
A. SYNCHRONOUS THROUGHPUT 92

1. Overview 92
2. Setup .92
3. Results .95

B. PRELIMINARY LINKING MODEL 95
1. Overview95
2. Setup .99
3. RESULTS 100

C. SYNCHRONOUS TIMING 102
1. Overview 102
2. Setup . 102
3. Results . 104

D. ASYNCHRONOUS EFFICIENCY 104
I. Overview . 104
2. Results . 107

E. MULTICASTING 107
1. Overview 107
2. First Test . 109

a. Setup . 109
b. Results . 110

3. Second test 112
a. Setup . 112
b. Results . 112

4. Third Test . 114
a. Setup . 114
b. R esults . 114

5. Fourth Test 115

vii

a. Setup . 115
b. Results . 115

V. CONCLUSIONS AND RECOMMENDATIONS 118
A. CONCLUSIONS 118
B. RECOMMENDATIONS 119

APPENDIX A. FILE RETRIEVAL VIA FP. 121

APPENDIX B. PACKET AND ICI FRAME STRUCTURES 123
A. PACKET FORMATS 123

1. "fddi _ c fr" . 123
2. "fddimacfr.. 123
3. "fddinmac tk" 123

B. ICI FORM ATS 124
1. "fddi m_ -ind . 124
2. "fddi uc;_ q"... 124

APPENDIX C. EXAMPLE ENVIRONMENT FILE FOR 32-STATION FDDI LAN

. 12 5

APPENDIX D. DEBUG TOOL EXCERPT 128

APPENDIX E. MAC "C CODE: "fddimacnmlt.pr.co............. 133

APPENDIX F. SOURCE C" CODE: "fddijenmult.pr.c............ 175

APPENDIX G. SINK C" CODE: "fddi sink mult.pr.c 184

APPENDIX H. ENVIRONMENT FILE FOR 50-STATION MULTICAST
CAPABLE FDDI LAN 196

APPENDIX I. CONVENTIONS 200

APPENDIX J. GLOSSARY 201

LIST OF REFERENCES 202

INITIAL DISTRIBUTION LIST 203

viii

I. INTRODUCTION

A. PROBLEM STATEMENT

The simulation model described in this thesis was developed in support of the Defense

Support Project Office's (DSPO) Common Data Link (CDL) project. The Common Data

Link is a fiWl duplex, jam resistant, point-to-point microwave communication system for use

in imaging and signals intelligence collection systems (DSPO, 1993, p. 1). Essentially, CDL

is to provide a protocol for communication between two or more Fiber Distributed Data

Interface Local Area Networks (FDDI LAN). These include an airborne LAN providing

sensor information with high data transfer rates, and a ground based LAN providing

command and control information.

This work is concerned primarily with the modification and testing of a commercially

available communications network simulation program, MIL 3, Inc.'s Optimized Network

Engineering Tool (OPNET*). This thesis represents the first portion of three relatively

independent research tasks being performed as MS theses to provide evaluations of several

Network Interfaces (NI) to the CDL and a multilink point-to-point protocol, in support of

the CDL project.

B. SCOPE

The scope of this thesis includes the following:

Introduce the CDL concept as the context in which the FDDI simulation

model is to be modified and tested.

Provide a tutorial style introduction to the OPNET FDDI model, designed

to expand upon the tutorial provided by the aer. This is directed

to those who will conduct further studies in the CDL project, and also to

students whose class laboratory work will include simulations in OPNET.

Discuss in detail the modifications made to the given model. Provide

analysis of the mode's actual simulation performance as a validation of the

mode's usefulness to the CDL work at NPS through comparisons against

trials published in the research literature using other simulation tools.

C. BENEFITS

The primary contribution of this thesis is the development of a functioning simulation

model that will support the features typically required in a CDL deployment scenario. Typical

data communication requirements include the following:

* a wide range of data rates,

* a wide range of error rates and types of error correction required,

* real-time requirements such as user-specified delivery delays and its

variation (jitter),

2

connection requirements (whether connection-oriented or connectionless,

muticasting broadcasting etc.),

reuansmission requirements,

coupling and synchronization with other data sources, and

adjustable prioritization relative to other sources.

The second benefit is to document in detail the MEL 3, Inc.'s FDDI LAN simulation

model in its operation and in its modification. The third benefit lies in the use of the

developed model as an instructional tool for classroom laboratory exercises supporting the

study of FDDI LAN operation.

D. ORGANIZATION

This thesis is organized as follows. Chapter HI provides a tutorial on the use of the

FDDI LAN model provided with OPNET. Chapter Ell addresses the details of the

modifications made to the given model to simulate multicasting and priority-based traffic.

Where applicable, clarifications regarding the OPNET' manuals are highlighted. Chapter IV

presents the results of simulation tests intended to verify the validity of the modified model.

The thesis ends with conclusions and recommendations for future work in Chapter \V.

3

H. MODELING AN FDDI LAN IN OPNET

A. OVERVIEW

This chapter is intended to provide a tutorial on the use of OPNETM to model an FDDI

LAN by providing a brief set of steps to build and execute a simulation. The current version

as of this writing is Release 2.4.A, dated 02/27/93, which is the third revision. Release 2.4.A,

Errata 1, dated 08/01/93 is a manual update. Some prerequisite knowledge is required of the

user, including "C" progam language syntax, ability to use a UNIX workstation, and an

understanding of the FDDI protocol. MIL 3, Inc. provide- thorough documentation in the

form of an eleven volume set of manuals, the first of which is Vol. 1.0, entitled: Tutorial

Manual. It includes a general introduction to OPNET', a trouble-shooting guide, and five

chapters presenting different communications network models. While none of these discusses

FDDI in particular, all are designed to familiarize the novice user with the mechanics of the

user interface, and should be studied prior to working with OPNET. Volumes 4.0 and 4.1,

the Tool Operations Manual, describes the editors of the user interface, and should likewise

be studied. The chapter entitled "FDDI" in Vol. 8.1.0, Example Models Manual, Protocol

Models, discusses the FDDI simulation in detail, and provides the essential information to

build, develop and execute a simulation. Most of the information presented here is available

in the manuals, but a number of idiosyncrasies exist which are not readily documented. These

required trial and error experimentation to discover, and in many cases required explanation

"4

from MUL 3, Inc.'s excellent technical support organization. The new user is advised to heed

every sentence regarding mechanical details; much of the advice given is hard-earned.

This thesis will not present an explanation of the FDDI protocol in detail, except as

necessary to emphasize or clarify the operation of the model. Many discussions exist in the

research literature and textbooks, for example, Stallings, (1991, 1993). Those interested in

the physical characteristics of optical fiber systems are referred to Powers, (1993). A useful

introduction to modeling FDDI in OPNET is Modeling and Simulation of a Fiber

Distributed Data Interface LocalArea Network, a Naval Postgraduate School MSEE thesis

by Aldo Schenone, which summarizes OPNETs FDDI model, includes a detailed description

of the FDDI protocol, presents the results of several simulations, and ends with a challenge

to other researchers to further develop the model. (Schenone, 1993)

The remainder of this chapter will briefly introduce the structure of OPNETs FDDI

LAN model and its components, introduce some preliminary modifications, then lead the

reader through a simple simulation.

B. PRELIMINARY THEORY

1. Theoretical vs OPNET Model of FDDI

The setting of parameters in OPNETe simulations is based on the following

equation and discussion, which is found in most literature treating FDDI LANs, including

5

Powers (1993, p. 340), Stallings (1993, p. 225), Tar, et al (1988, p.55), and

Jain, (1991, p.20), to name a few:

DYar + FMax + TokxThxe +U.+SAW •g T7T (1).

where:

SA,,- synchronous allocation for station

D_Mar = propagation time for one complete circuit of the ring,

F Max = time required to transmit a maium-length frame (4500 octets), and

TokenTime = time required to transmit a token.

In an actual LAN, a sation management protocol handles the assignments of SA,

which may be chne in real time. OPNET simulations represent steady-state performance,

and do not contemplate changing network conditions.

All stations negotiate a common value of TFRT. Also, these timers and variables

are maintained at each station

- Token Rotation Timer (TRT)
- Token Holding Timer (THT)
- Late counter (LC)

Each station is initialized to the same TRT, which is set to TTRT. Note that LC,

TRT and THT are not global; each station maintains its own copies, which will differ from

those of other stations. Ifa given station receives the token before its TRT has expired, then

that TRT is reset to TTRT. On the other hand, should the token arrive after the expiration

6

of TRT, then its liteness is recorded by setting LC to " I" (at that station). Two consecutive

late tokens will increment LC to "2", in which case the token is considered to be lost, and a

re-initialization process will commence. OPNETr has no provision for re-initialization. On

the other hand, as a computerized simulation, it never permits LC=2 to occur.

When the token arrives early, (before TRT expires), THT is set to the current

value of TRT. The transmission rules are as follows:

1. A station may transmit synchronous traffic for a time SAI, as specified for

that station.

2. THT is enabled after synchronous traffic is sent, or if there was no

synchronous traffic to send. The station may transmit asynchronous traffic

while THT > 0.

In the TXDATA state ofthe MAC process model, THT is incremented from zero

to THT. This is an important point in regard to the prioritization scheme by which a value

T_Pr is asigned to•ea priity seting and the eligibility of a given priority to transmit

depends on TP r i C J I in comparison to THT. That is, for THT decrementing, priority i

traffic may be transmitted as long as T_Pr. [i is less than THT. This implies lower

TPri [j is assigned to higher priority. In OPNETO, THT increments up from zero. Priority

i traffic may be transmitted as long as TP r i [i I is greater than THT, implying that higher

T_Pri [i is assigned to higher priority. This subtle point is important to know when setting

values to TPri [1 I in the MNIT state of the MAC process model.

There is an important distinction in the timing of transmission eligibility for

synchronous and asynchronous traffic:

7

The time spent sending synchronous traffic may not exceed SA, for station

i. That is, the protocol will not allow a synchronous packet transmission

to commence if it can not be completed without exceeding SA,. OPNET

supports this criterion.

Asynchronous trnmniions may commence as long as THT has not

expired. Any packet transmission in progress when THT expires is

allowed to complete, but no more will commence.

The protocol allows the actual token rotation time to have a maxinmm val

(2)TTRT, with an average value of TTRT over time.

2. FDDI LAN Equation Parameters

Each of the terms in Equation I given above is addressed in this section, with

reference to its representation in OPNET's Environment file attributes.

a "FMax"

The time required to transmit a maximum length packet is based on the

assumption that any station is capable of transmitting at the rate of 100Mbps. Since the

maximum packet length is 36,000 bits (4500 octets or bytes), the algebra yields 0.360 ms for

FMax. Powers agrees (1993, p. 340), but Tari et. al. use 0.361 ins (1988, p. 55). In

OPNET, the fddi-mac process model defines the transmission rate as 100 Mbps, in the

Header Block. FMax is not directly assigned as an attribute, but simply exists as a physical

characteristic which must be considered in determining TTRT and SA, assignments.

S

b. ~"DMax"

The Maxmum Ring Latency is the time required for a frame to travel

around the ring. The naxinuim value is often assumed in texbook discussions, but it should

be calculated for individual cases. The total delay may be defined as follows:

D_Max - (total fiber length x delay rate)+(number of
stations x station latency)

Powers uses 1.73 ms, Tari et.al. uses 1.62 ms, and Dykeman and Bux use 1.62 ms. DMax

includes the time required for a frame (which is basically a number of light flashes) to travel

the length of the fiber on the ring, plus the time required to cross each station interface.

5.085 x 10i sec.km. is the value used in the literature for the delay rate of a signal in optical

fiber. The reciprocal results in 1.9665e+08 mis, which agrees with the generally accepted

value of % c for the speed of light in glass. OPNET and Dykeman & Bux use a station

delay of 60.0e-08 sec. Powers assumes I ps as a representative value. Ultimately the value

is a physical characteristic that could be measured on a real device, and may be declared in

a computer simulation. The value 1.617 ms derives from using the maximum possible

dimensions: 500 dual attachment stations or 1000 single attachment stations on a 200 km

ring yield the following:

(1000 • 60.0 x 10"') + (200 • 5.085 x 100) = 1.617 ms.

The environment file attribute propdelay represents the actual time the

packet is on the fiber between two stations, rather than the delay rate, and therefore defines

the size of the ring. OPNET' has no safety feature to prevent the user from entering

9

aftb that would define a ring larger than 200 kIn. Note that the stations are assumed to

be equally spaced. The user should realize that the value of 5.085e-06 given with the original

example environment file implies a one kilometer length of fiber, rather than a delay rate.

Powers (1993, p. 328) notes that the early proposal for FDDI limits fiber length between

stauonsto2kilometers. InOPNET*, the attributes propdel ay and statlonj atency are

used in the "C" code to postpone the reception of a packet until sufficient time has passed to

allow for physical delays.

Synchrnous allotment or synchronous bandwidth, is the time a station is

granted to transmit synchronous traffic, regardless of the lateness of the token. It is a form

of prioritization, providing a means by which certain types of traffic are not delayed. For

example, voice traffic would be synchronous. Textbook discussions represent SA, in units of

time for each station.

Asynchrnous traffic is transtied whenever there is THT remaining after

the transmission of al synchronous traffic. It is the responsibility of the Station Management

Protocol (in OPNET, the user) to ensure that the synchronous bandwidth is sufficient to

handle the synchronous offered load. One nuance involves the inviolate nature of SA, for each

station. A given station's synchronous offered load may amount to relatively little in terms

of bits per second, while the packet size is assigned a value too large to be transmitted in the

time SA,. In this case, synchronous traffic would never be transmitted, and outbound

packets would simply accumulate in the buffers of the MAC. The Environment file attribute

10

"sync bandwidth" correponds to SA,, but is expreeasaunilessed f tin oof TTJT,

rather than as a time.

it "7TRI"

uation 1 mpts that physical uirem of the fiber and the stations

are used to determine a workable TTRT value. The FDDI specification allows a range of

setti•gs from 4 ms to 165 ms (Powers, 1993, p. 339). Powers also notes that synchronous

voice tranmission requires ESA, = 10 Ms. In OPNE?*, the Envirnment file attribute TReq

corresponds to TTRT.

C. MODEL STRUCTURE

OPNET's FDDI LAN model structure is hierarchical. The LAN is a ring made of

stations and the connections between them. Figure I shows a 50-station FDDI LAN as

shown in the user interfce window. Fgure 2 is a ten station ring provided for greater clarity

of detail. The stations are modeled as connected nodes, each of which is in turn defined by

a process model. The processes are represented by state transition diagrams, which are the

ultimate source of the "C" language code that describes the model's behavior. Figure 3

illustrates the FDDI station model. Figures 4-6 are the process models for the source, sink,

and MAC processes, respectively. These correspond one-to-one to the nodes " 11 c.s i n k."

"11 c-s i n k," and "mac" shown in Figure 3. The packets of information that travel between

stations on the ring, and between nodes within the station, are also modeled and may be

11

ie n

93112

to U

Figure 2. Ten-Station FDDI LAN, "fddi-net_5 0"

12

11c-siznk

Figure 3. FDDI Station Model, 'Tddi stationo

Figure 4. Source Process Model, "fddi~gen"

13

(datfault)

(&ef mit)
m4 X - - - - ZSCflDW

Figre S. Sink Process Model, mfddi sbnkT

/00*N

Fim r 6.MA Mde, fditac

14

modied. Model parameters may be atW bf aevr method•, with the file

being by far the most conveiemt.

1. FDDI LAN

Figure 7 shows a 32-station FDDI ring in the user interface window as it would

appear on a computer scree. This mage as displays the Network Editor, whose icon appears

toward the upper left comer of the fiure. (A note on the mechanics of activating the various

editors: as indicated in the tutorial manual, the center mouse button activates the desired

editor. If instead either the left or right button is pressed, then the opposite button must also

be pressed to "cancel" the first; only then will the center button work as expected). To the

right of the ring are on-screen menus of attributes for one station (actually, three menus are

shown to display simultaneously all the fields). This menu is invoked by placing the cursor

over the desired station, then pressing the right mouse button. The FDDI protocol supports

up to 500 dual-attachment stations on a ring, and OPNET* permits from two to 500 stations

in a ring.

Actual generation of the ring is best done outside OPNEr, through a UNIX command

window set to the "-\op_models\fdd"direcorypathl The command "fddtbul1d.era.x

<number_of.stat ions>" will automatically generate an FDDI LAN with the number of

stations specified. The user should verify that this function is present in the desired

subdirectory. This operation is described in manual Vol. 8.1.0, "FDDI," and refers the user

to Vol. 6.0, External Interfaces Manual, which has a more complete description of the ring

building protocol. Were OPNET active during this ring-building process, then the "Rehash"

icon toward the lower right of the user interface window must be activated to update the

15

3AA()OMMLAIM

AW.m

PM~os

IMIAM bqoft pw

*~u XI. at I pI

16

program 's access to models in the subdirectory. In general, the "Rehash" command should

be used frequently, particularly when new files are generated through simulation runs or

through model editing.

The LAN as shown is not actually a true ring architecture, as no dedicated

physical layer object exists in OPNET* for modeling ring architectures. The model is in fact

a circle of point-to-point links; the ring is an abstraction whose characteristics and behavior

are represented in the "C" programs that comprise the process models. (OPNET€, Vol. 8.1.0,

"FDDI," p.23)

2. FDDI Station

Figure 8 illustraes the FDDI station in the user interface window, summoned and

printed from the Node Editor. Also shown are the menurs listing the attributes associated with

each part of the station model. Message traffic in the form of packets is generated at the

source, 11 c-s rc. at a rate specified by the user. The source model does not function as a

true Logical Link Control (LLC) beyond correctly interfacing with the Medium Access

Control (MAC) model. (OPNET, Vol. 1.0, "FDDI," p. 21) The MAC entity is represented

by mac in the model, and is responsible for encapsulating packets generated by the source,

holding these packets until they can be transmitted, receiving packets from other stations,

destroying packets as needed, and maintaining the locally held Token Holding Timer (THT)

and Token Rotation Timer (TRT). Packets are counted and statistics gathered at 11 cs i n k.

These three nodes are modeled in detail by respective process models, which may be assigned

with the attributes menus shown in Figure 8. The field "process model" may be changed

17

hwwe-w .- &~ol -m

-m -4- tnm ~
J- LI.n a.lw "ampesm

VMS" woo m4-n Wie -. ~t 00d A@s n mw &MAWd
ma-S moamo etet -me1

* x~ T~ ?.bq psmte
prseu~psigo"

at1 a (Um (0p

%em.m

75W-RI Nabt -p Rdd WIA

Figur 3.W aD Statio Moa ihO-cen Atue eu

gou 84

by cursor action, with selection made from the resulting submenu presenting a list of available

process models. The nodes "phy_rx" and "phytx" represent the receiver and transmitter

interfaces to the ring, and are not further defined by process models.

The user may modify the station model within the Node Editor by setting the

attributes fields as desired, then saving the model by activating the "wri te node model"

icon toward the lower left corner of the user interface window. By then exiting the Node

Editor, entering the Network Editor, and calling the desired network model (e.g.,

"fddtnet._32"), each station acquires the new setting when the network model is archived

and bound ("A+B" icon). The same modification may be effected from within the Network

Editor by calling the attributes menus for each station and setting them individually. This

method would be preferred only if the user desires to set differing attributes in various

stations. Note that setting the attribute fields is not the same as modifying the process model

itself, which is accomplished with changes to the "C" programming code accessed through

the Process Editor.

3. Processes

Process models are specified by State Transition Diagrams (STD) representing

the actions of the nodes within the station model. Figure 9 illustrates the process model

fddimac as it appears in the Process Editor in the user interface window. Figure 10 shows

the on-screen menu that appears when the cursor is placed over one of the states (ENCAP

in this case), and the right mouse button pressed. Invoking the "enter execs" attribute calls

the text editor shown in Figure 11. Here the user may inspect the programming code behind

19

As"
imv WW &a misIs% iI

Fipre 9. Process Model "fiddi mac" in User Interface Window

20

cA(IN3b * mEiwI-w_

609.e

taw."

: eCt

Figure 10. Process Model "fiddi mac" with On-Screen Attzibutes Menu

21

bw * r~ MEaMWlw U ti -Spr

Vepr - menu-mk-mO

s feems p& an dno 1 .L -sm
tewy I. itea a-V - M m um *

Ska-~ t
com--* wrdmW~~~~a ae amj U9 -amWdaG C@et

Asa" as taMCOIdl.O!C4a U= 00

A5OI~~I PS (A.$ OPWWM 5L 69 GNFbu) -1&N5nW

*~~$ a& smin-css mmg-pmý. *u~m* a

U P If *a ism to n egw &a pnaaa Wit
P VIV*A ~l nba alMs Pinina MI bb GqMae*,

*at (easel. - EUINSmpm)S

5, P mauI ia -a tc. *aai- ea.

st one LA"an.me " lip.pa

Figure 11. Process Model "fiddi mac" with Text Editor

22

the model's behavior, and modify it if desired. Each state has its own section of code, and the

icons to the left of the window include additional editors, all described in Vol. 4.0, Tool

Operatons Manual. These are primarily variable and function declaration sections. The

entire code for the process may be called with the icon ".C," but this editor is for viewing

only. Any changes made in the ".C" editor will remain when the editor is dismissed, but will

disappear if the process is compiled. If calling the ".C" editor returns a ". C f I e

unavailable" message, then recompiling will generate the file again (sixth icon above the

lower "EX I T" icon in the Process Editor). Many UNIX stations include a cleanup command

that deletes certain temporary files upon logging out of the system, and the "C" language

codes ending . ". c" are not necessary once simulations are generated. They may always be

recovered by recompiling the models. (In the file directory containing OPNET, the model

source codes have the suffix ". pr. m".) If changes are made (in a proper editor), the model

must be recompiled. If several changes are being made within different sections, each may

be saved with the keystrokes <CTRL+S), deferring compiling to the end. (The set of manuals

includes a summary page of OPNET's text editor keyboard commands.) If desired, the

model may be saved without compiling by using the "Write Process Model"icon. When

a process is changed, the station model in the Node Editor must also be called and written

afresh. Then the corresponding network model must be called into the Network Editor, and

be archived and bound again. If the modified process was not compiled earlier, then the

"C+A+B" icon will compile all the process models in addition to archiving and binding them.

23

a Source Node

The source node of the FDDI station model gmerates packets at a rate and

size specified by the user. It also determines the destination address for each packet, the

priority if applicable, and records the packet's creation time so that delay statistics can later

be gathered. These data are passed to the MAC for encapsulation. In the Node Editor, the

source is labelled "11 c-src." and the process model is "fddl-gen.w

In the source process' original form, as released by MEL 3, Inc. in version

2.4.A, the packet arrival (generation) rate is stochastically assigned on an exponential

distribution approximating that specified by the user. If a precise, invariant arrival rate is

desired, it may be assigned with the foMlowing change to the NIT state in the Process Editor,

where "constant" is substituted for exponentta1 in the line:

tnter-dtstptr - opdlst-load (wexponentialm, 1.0 /
arrival-rate, 0.0):.

A voice traffic transmitter station, for example, would require a constant

packet arrival rate from the source. Similarly, packet length is originally assigned a constant

value in the given model, but may be set to a stochastic approximation of the requested value

by replacing < "constant: > with < "exponent ia I O> in the fine:

len_dist-ptr - op_dist-load ("constant." meanpk-len.
0.0);.

If all stations on the ring are to have the same assigned attributes and the

same source code (i.e., all < "constant O> or all < "exponent i a I 0>), then the remaining steps

24

are to save and comple the proem in the Process Editor, then call and save the station model

in the Node Editor, and finally archive and bind the relevant LAN model in the Network

Editor. If the stations on the LAN do not all have identical source code (i.e., some

"constant' and others "exponential'). then the modified process models and their

corresponding node models must be renamed. The following steps illustrate the creation of

a station modified to allow a ring to simulate a number of voice stations amid other

"transmitters:

I. In the Process Editor, substitute *constant" for "exponential" in the

"fddl1gen" model's DU state editor. Save the change by keying <CTRL+S>

while the cursor is inside the INIT state's editor.

2. Use the "Write Process" icon to save the modified process under a new name,

for example fdd i gencons t.

3. Compile the new process model, then exit the Process Editor.

4. The Node Editor is used to create and save a new station model, by calling the

original model and changing the "process model" field in the on-screen menu

for the relevant node (in this example the "fddl_gen" process in the 11 c_s-rc

node is changed to "fddi-gen-const").

5. The new model is saved by invoking the "Write Node Model" icon. Exit the

Node Editor.

6. In the Network Editor, the desired stations on the relevant LAN are reassigned

using the on-screen menus: when the "model" attribute field is invoked at a

25

particular station, a list of available station models appears, and the desired one

is chosen. If the expected model does not appear in the hst, activate the User

Interface Window "Rehash" icon to refresh OPNET's access to recently

created files.

7. Desired stations are reassigned as required, and the LAN is saved, then re-

archived and bound.

8. Diffarny named models using the same functions may cause naming conflicts

at simulation run time. Should this occur, then the word "stati c" must be

inserted in the Function Blocks ("F8" icon) of both the original and the new

source model processes in the Process Editor, just prior to

fddigenscheduleO.

The above steps illustrate a change made to the source code, and do not

represent the same situation in which identical stations are assigned different values in the

given on-screen attributes menus.

b. Sink Node

The 11 c-sink node of the station model is the final destination of all

message traffic. The INIT state establishes counters to hold statistical information regarding

network performance (throughput and delay). The STATS state updates these counters as

packets are received. The DISCARD state reports the statistical information at specified

intervals, and finally destroys the packet. Because new packets are created for each

transmission, they must eventually be destroyed when received, or the host computer

conducting the simulation will soon fill its memory.

26

The "fdd i s I n k" model in the current version of OPNET (Release

2.4.A, dated 02/27/93) is defective. It will cause the simulation to abort upon completion,

with the error message "Program Abort: packet pointer Is NIL." in the event any

station did not receive traffic. Figure 12 illustrates the State Transmission Diagram as

originally given, and the corrected version is shown in Figure 13. The user should correct the

defective version, referring to Vol. 1.0, Tutorial Manual, "Bpt," pp.6-10. Saving this

modification requires the same steps described for the source model, with the exception that

no text has been changed. This defect and its correction are documented by N9i 3, Inc. as

OPBUG 2070.

MIL 3, Inc. maintains an electronic bulletin board containing information

on model corrections and upgrades between OPNET revisions. Users may acquire these

upgrades using file transfer protocol (ftp) procedures to download desired files. Appendix

A includes a sample of dialogue used to acquire an upgraded file from MEL 3, Inc.

C. Medium Access Control (MAC)

The MAC process model encapsulates frames received from the source

node for transmission to other stations, maintains token holding and token rotation timers,

inspects received packets, decapsulates received frames, and determines token usability.

Vol.8.1.0, Example Models Manual, "FDDI," provides a detailed description of the MAC

process and of the functions of its component states.

The MAC model provided with OPNET Version 2.4.A, (filename:

"fddl_mac.pr.m") has been upgraded by MIL 3, Inc. and the newer model and

27

(drtault)

Figure 12. Originl (Defective) Sink Process Model

(def ault)

(dot au1t)

(ZND....O7..51M)
%%

Figure 13. Corrected Sink Process Model

28

documentation are available via ftp on Internet, under the subdirectory

"-/patches/2.4.B/opbug2081". When retrieving a file via ftp, the user should verify the

entire file is received by checking the file size listed on the bulletin board against the size of

the file received. Entering < "type image0> at the ftp prompt should ensure a full and intact

file retrieval. The original "fddlmac. pr .m" file is then removed from the user's directory

(-/opmodels/fddi), stored in a safe place, and replaced with the newer version. The new file

must then be compiled from the command window with the command, < "op.mkpro -m

fdd iLmacN>, the procedure for which is described in Vol. 6.0, External Interfaces Manual,

"Env". It has been observed that the "drag and drop" method of transferring files in using the

File Manager in the SunOS Windows environment sometimes causes the subject file to gain

or lose a byte or two, leading to "bits rum error" messages when said file is compiled in

OPNET. Standard UNIX commands are the most reliable method for moving OPNETI

source files.

The patch is not necessary to operate the simulation; it is a refinement of

the model, and wil be included in the next revision of OPNETO. The patch OPBUG 2081

actually includes three repairs, documented as OPBUGs 2081, 2095, and 2097. OPBUG

2081 corrects existing timing and efficiency inaccuracies connected with the token

acceleration feature, by which the token is destroyed and the simulation enters a "fast

forward" mode in order to reduce the number of events while no station has a need to

transmit. In a real FDDI LAN, TRT is reset each time the token passes, whether or not the

token is used. The model in its original form allows the TRT timer to continue running when

29

the simuaton enters "token acceeration," resulting in unexpected Late_Count occurrences.

OPBUG 2095 is also related to the token acceleration feature, correcting the existing

incorrect iitialization of several variables when the simulation enters token acceleration. In

particular, the variable FddLNumStations. the number of stations on the ring, is always

reset to one, upsetting calculations predicting the proper location of the token at the end of

an idle period. Finally, OPBUG 2097 addresses the fact that the original model neglects to

properly account for the transmission delay associated with the token itself

4. Packets

AD communications between stations in a LAN and between the internal nodes

of a station are conducted using data framed into packets. The Parameter Editor, described

in Vol. 4.0, Tool Operations Manual, "Pm," is illustrated in Figure 14, which shows the

packet structure fdd i -ma cf r, which is used to encapsulate the frames generated in the

Source node and sent to the MAC. Appendix B lists the five packet structures used in the

FDDI LAN simulation, giving their fields and assignments. OPNET7 simulation does not

enforce limits on packet size required by the standard IEEE 802.5.

a. ICI Formats

Interface control information packets (ICI) are used for internal

communication within a station, reporting for example service options, error conditions, and

packet arrivals. Figure 15 shows the ICI Editor within the Parameter Editor, with the ICI

fddi_mac c- req. This ICI specifies the control information passed from the source to the

MAC when transmission requests are generated. The ICI fd dlmaci nd specifies control

information passed from the MAC to the LLC when a packet has been received by a station.

30

amNE 2A UI .b F M.MP

I""w -u)OW ai mn

Figure 14. Packet Format "fddi mac-fr" in the Parameter Editor

31

MY ma PR OPKITEU(i)WHOLI.St
X Do 413b
PA PE OZ Beam" seag.A. 41 -0

AM PL

P-- C3 IPCL

w9ff

"am ft

ICI Forniat lddi-mac-rec" in Parameter Editor

32

For OPNET simulation purposes, both structures are created once per station in the

simulation, and reused as needed.

& Pace" Formats

Three types of packet frame formats exist in OPNET" to simulate

communications between the stations. For the simulation these are created as needed and

destroyed when no longer needed. Packets of format "fddl.J 1 cir" are created in the LLC

source as arrivals are generated. The format has only one field, containing the creation time,

which is used to generate delay and throughput statistics when the packet is finally received

at its destination address. The packet format "fddlmacfr" is used in the MAC state

ENCAP to encapsulate the generated packets for transmission on the LAN. The "1nfo" field

contains the "fddlj 1 cfr" structure providing the data of interest. Because OPNET'

simulates only the characteristics of transmission and not the actions of stations in response

to information received, the packets used are not precise replicas of real FDDI frames. The

token is represented by the frame format "fddt_mac_ltk". The field "fc" is inspected by

each MAC process receiving a packet to determine whether it is a token or a message packet.

5. Environment File

Appendix C is an example of an environment (or configuration) file used to assign

station attributes to a 32-station FDDI LAN. Inspection shows that the fields specified in the

file correspond to the "promoted" fields in the on-screen attributes menus that appear in the

Network and Node Editors, and to the fields in the Simulation Editor. Promoted attributes

may be assigned directly within these editors, a tedious and error-prone process at best. If

33

a simulation is begun with none of these attributes specified, OPNET will prompt the user

for inputs at the command screen, anothe error-prone and tedious process. The environment

file is the most efficient way to assign parameters of interest, and may be quickly modified

between simulations, using the UNIX text editor. Vol. 6.0, External Interfaces Manual,

"Env," discusses the environment file, and points out that attributes assigned in the

environment file supersede those assigned in the Node and Network Editors. The file is

recognized to OPNETP by its . ef" suffix. The assigned attributes are described in chapter

"FDDI" of manual Vol 8.1.0, Exmpk Models Matwe, and are presented here in their order

of appearance for summary and in some cases for required elaboration. The attributes are not

declared as variables in the "C" programs, but rather are generated by adding them to the on-

screen menus in the Node and Network Editors. The user can create new attributes by adding

them to the "extended attrl butes" field in the Node Editor, then including them in the

environment file. This procedure is discussed in Chapter MI. "Env," pp.33-34, in the

Extenal Interfaces MWaWn dhsasses the use of name wildcards in the attributes given below.

Sequence of entries is not significant in the environment file.

a. "Staion ad*r=s"

This attribute is required for station identification; numbering of stations

is from zero to N- 1, where N is the number of stations on the ring. The INIT state in the

MAC process calls this variable. Note that for quick changes to the file, lines may be

commented with the pound key <#>.

34

This attuibute identifies the ring, in the event more than one may be

modeled simultaeous. It is set to zero if there is only one ring.

c. "l dest address"

This attribute assigns the lowest identification address that may receive

traffic from this station. The use of the wild-card asterisk, shown in Appendix C, assigns the

same value to all stations. Quotation marks are used here because the attribute assigned has

spaces vice underscore marks between words.

d "high dest address"-

This attribute assigns the high end of the range of addresses to which a

station may send traffic. It is used in conjunction with the previous attribute by the

"11 csrc" process in the [NIT state. It is permissible to limit the range of target addresses,

down to one, but all target addresses must lie in a contiguous sector. For example, the code

as given has no provision for allowing a particular station to send packets to two different

stations without also possibly sending to the stations between them.

e. ",aryiv rate"

This attribute assigns the rate at which the source process will generate

packets, and it is called by the INIT state. It may be set to zero for any station intended to

be idle. As originally used in the process code, arrival rate is a stochastic approximation

exponentially distributed about the assigned value. To make this a precise unchanging value,

as in the case of a synchronous voice transmitter, the code would have to be modified as

described in the previous discussion of the source process.

35

I mea pk mkn

Mean packet length is expressed in bits. Despite the nmu, this value is

actually held constant by the MUIT state of the source process model. The user may modify

the code using the procedure described earlier to substitute <Oexponential"> for

< "constant O> in the line:

len-dist-ptr - op-dist-load (*constant," mean-pkjen.
0.0).

which appears toward the bottom of the INIT state enter executives in the Process Editor.

Then the station will generate non-identical packets, which may be more realistic behavior.

OPNET= will permit any number of bits for the packet length; the user should know that

FDDI packets have a maximum size of 36,000 bits.

g. "asynC_m "i"

FDDI stations may generate synchronous and asynchronous traffic. This

attribute sets the proportion, with 1.0 indicating all asynchronous traffic generated by the

given station, 0.5 indicating half synchronous and half asynchronous. Any value between zero

and one inclusive may be chosen. The NIT state in the 11 cs rc model calls this attribute

with the statement:

op_ima_olj_attr_get(my_id, "async_mlx", &async iix)3

36

k "sync baxdwid"

Ths attriate is used in the MAC proces INIT state, where it is expressed

as a percentage of TTRT. It is analogous to SA, in Equation 1, but is numerically a fraction

of TReq (TTRT), while SA, is an amount of time. Synchronous bandwidth should not be

confused with synchronous offered load. Bandwidth is expressed in time, while synchronous

offered load is a bit transmission rate. Therefore, synchronous bandwidth is the time allotted

for the transmission of synchronous offered load. It is entirely possible to set parameters so

that these two attributes do not match well.

Indescribing "sync bandwidth." Vol. 8.1.0,E, umpeModefsMafwu,

"Fddi", warns the user not to allow the sum of all assigned attributes "sync bandwidth"

to exceed one, since OPNET' does not enforce FDDI protocol standards. However, this

warning neglects to consider the physical delay parameters in Equation 1, which indicate that

total synchronous bandwidth must be somewhat less than TTRT. The correct assignment of

"sync bandwidth" involves some algebra, and is perhaps best explained with an example.

Given: DMax: 1.617 ms.
F_-Max: 0.360 ms.
Token Time: 0.00088 Ms.
TTRT: 8.0 ms.

Using Equation I yields:

8.0 ms. - (1.617 ms. + 0.360 ms. + 0.00088 ms.) = 6.02112 ms. = ESA.

This is 6.02112 ms. of total bandwidth to be divided among as many stations

assigned. Assume there are five such stations:

37

6,02112 ms. -5 stations - 1.204224 ms =SAI

SAs is converted to "sync bandwldth- with a division by TTRT:

1.204224 ms. + 8.0 ms. - 0.150528

This is the value entered into the Environment file.

Ths atu*tt is called in the MAC process, INIT state, and represents the

specified station's requested value of TTRT. A real FDDI LAN has a TTRT negotiation

piae; OPNEr simply chooses the smallest TReq value available. The user may, but need

not set dfen values to each. This value is in units of seconds, which is not apparent from

the manuals nor from the default value that appears at the command prompt if no value is

assigned.

j. "sppamn sation"

The spawn station is simply the starting point for the token, and may be

assigned to any station on the LAN.

k "Msaon latency"

This is the delay incurrd by packets as they pass a stations ring interface.

Powers gives 1 sec. (1993, p.336); 60.0e-08 sec. agrees with Dykeman and Bux (1988).

Station latency is a component of D Max in Equation 1.

L "prop deq"

Propagation delay is the time separating stations on a ring, based on the

amount of fiber between them. It is givm here ain seconds, and may be used to define the ring

size. The INIT state of process fddtmac calls this value, which is used as one of the delay

38

parameters applied to transmisson commands. FDDI standards limit the ring size to a

maximum of 200 miles of fiber (Dykeman, 1988, p. 997), and OPNET assumes that the fiber

length is divided evenly among the stations. That is, all stations are evenly spaced on the

LAN in OPNET simulations, whatever the mbnter of stations and length of fiber. Dykeman

and Bux (1988, p. 1000) define propagation delay in units of time per distance, and give a

value of 5.085 us/an. The value given in the original example environment file, 5.085 x 10'

seconds, corresponds to one kilometer of fiber between stations.

This attribute speeds the -. lation by removing the token during idle

periods when no station has packets to transmit, significantly reducing the number of events.

&. "duration "

This is the simulated run time in seconds. Most systems should reach

steady state in less than a second.

a. 'viebow sim "

This feature enables on-screen reports regarding event numbers, time

remaining until completion, etc.

p. "updjnt"

This specifies in seconds the intervals at which to make on-screen

simulation status updates. It must be less than duration to be useful.

39

The output scalar file receives scalar data accumulated over several

sinmiatios. It is useful in observing the effect of vaying one or more attributes, for example

TTRT, over a series of experiments.

The output vector file receives throughput and delay information relevant

to one simulation run. Output vector files can be quite large, on the order of several

megabits, and for this reason are often automatically deleted by a < "c Ieanup > command

included in a UNIX station's logoff sequence. The user should alter the filename or save

desired plots as ". a c" files using the Analysis Tool, rather than log off planning to study the

vector data at some future time.

s. "seed"

This is a constant used by the simulation's random number generator. It

may be any positive integer, but should be left constant once chosen.

L "dMbug"

This enables the Debug Tool, allowing the user to step through a simulation

one event at a time. Once enabled, the command < 'he Ip > provides a listing of the

debuggers features.

40

D. SIMULATION

This section presents the steps involved in running a simulation and observing the

resulting output data The user must keep in mind that OPNET is unaware of IEEE 802.5.

That is, it is the user's responsibility to ensure reasonable input parameters are assigned in

keeping with the established standards. The steps given will use the original model provided.

1. Build the LAN

If a 32-station LAN is not already available in the Network Editor, then one

should be created using the command < "fddi•_bui Id. em. x 320>, as described earlier.

2. Correct "OPBUG 2070"

The simulation will abort if the original process model fddl_s ink is used for the

S I N K node 11 c_si n k, and some station happens to have not received any packets. The

correction described earlier should be applied, and the model recompiled and saved.

3. Implement "OPBUG 2081" Patch

As described artier, this repair corrects minor timing inaccuracies in the model,

related to the token and to the token acceleration feature. The simulation will work without

aborting if the patch is not applied, but the user planning on implementing code changes

within the model over the long term should patch the model before doing so.

4. Update Environment File

Refer to the configuration file in Appendix C for input parameters. As mentioned

before, use of this file will save the user the effort involved in setting parameters by hand

through the Node, Network, and Simulation Editors. Note that attributes assigned in the

41

n file will supersede any that are assigned through these editors. The file should

be given some distinguishing name, for example "fddi 32. ef".

5. Generate Probe File

Use of a Probe file is optional. The process code as written will generate vector

file outputs only for overall throughput, delay, and mean delay. Additional outputs may be

monitored through the use of a Probe file, illustrated in Figure 16. Vol. 4.1, Tool Operatzow

Mama/, "Pb," describes the Probe Editor. With it the user may monitor, for example, each

station's arrivals (packet generation) and throughput at any physical interface point on the

LAN, measured in packets and/or in bits per second. For simplicity, only packet arrivals at

station fi 1 will be assigned a probe in this simulation.

6. Simulation Editor

Figure 17 illustrates the Simulation Tool in the user interface window, with the

settings necessary to run this simulation. Use of this tool is discussed in Vol. 4.1, Tool

Operations Manual, "Sm". Fields are assigned by use of the cursor, and are filled by

choosing from on-screen menus or keyboard entry. The "Simulation" field should be

asigned the LAN filename, < fddi_32_net> (note th filename suffixes are not visible to the

user in the various Editors). The fields "Probe F1Ie", "Vector F1Ie", "Scalar File",

"Seed", "Duration", and "Upd Intvl" may all be left blank if they are assigned in the

configuration file; "Probe File" is optional in any case. The "Arg Name" field should be

assigned <environment file>, and the "Arg Value" field should be assigned the

< fi ename> given to the environment file. The user may then save the work area using the

42

MA()ýEmftwerý-

_PO also&
E OA iiUW

poe"Sa 93-

Fiur 16@abeAsgmen

news M 43

OFMITZAA (QWJX&36bP4 IM

Imomm MOS amm MI ININD =110 sum

Owe"

cc:*

I

17 amadjAb" film attrOWAS NO =amlh" rise'l

Main "a-mma-a" oftfammot MID eft

nano ow "m bowndth

14MIN M Us-ore hLok dm
a vex soux-offs , in ;; 0 3U.K.

jwjmmpL-- ImCimil

met - w GPM badmp t&b MA

tnt 01101i atemb "Jaw ONIONS

Migure 17. Sinwlation Tool

44

"Write Simulation" icon, to spare the effort of filling in these fields again on finure

simulations.

7. Start the Simulation

Oncethefieldsareset, the sinuziationis started with the "Execute Simulation

Sequence" icon. Had the user neglected to assign some parameter, the simulation will wait

until the comand line prompt has been answered; the user should keep the command screen

in view. Upon completion nf the simulation, a vector file (suffix ". ov") will be generated,

along with a scalar file (suffix ".os"). The "Rehash" icon must be invoked to refresh

OPNET's access to the files. Then the user may exit the Simulation Tool and enter the

Analysis Tool.

S. Analysis

Figure 18 shows the Analysis tool in the user interface window, whose operation

is explained in Vol. 4. 1, Tool Operations Manual. The first action upon entering this tool is

to call the available vector outputs, using the "Open Output Vector Fl 1 e" icon, then

selecting from the choices presented. If more than one are present, choose the one that was

assigned in the environment file. The on-screen menu will then disappear, leaving the user

to select the "Create Si ngl e Vector Panel" icon, which presents the on-screen menu

shown in Figure 18. The entries "end-to-end delay (sec.)", "throughput

(bits/sec)", and "mean delay (sec.)" are generated directly from the SINK process

model. The remaining field, "ringO.f11.fmac[O0.pksize." comes from the Probe Editor.

Each may be plotted by selection with the ursor, then dragging the box comers to the desired

45

aa-.d MEMECast

*m--Ems

Figure 15. Vector Trace Selection in the Analysis Tool

46

size. Having placed the panel, the plotted points are fired by clicking the left mouse button,

or by placing the cursor over the "F l re Al 1 P a ne 1 s" icon and clicking the same button.

Figure 19 shows all four plots generated, placed together on the screen. The "Create

Multi -Vector Panel" icon is used to place several plots in the same panel, an operation that

is meaningful when the Probe Editor is used to generate comparable outputs. Once the

desired plots are on the screen, they may be saved with the "Write Analysis

Confi gurati on" icon, which will store the plots in a ".ac" file for later recovery. This is

important because the vector file will be written over the next time a simulation is run using

the same output vector filename. In addition, the UNIX station's logout sequence may

include a < 'remove *. ov O> command to prevent the accumulation of large vector files in

memory.

The output scalar file, on the other hand, accumulates steady-state data over

several simulations, allowing the generation of plots showing, for example, the effect of

various TTRT values on total throughput. The user wishing to create su, a plot should

ensure the file is empty of previous data before commencing a series of simulations.

9. Debug Tool

The debug tool may be activated from the environment file. The command

< (he lp "> will ist the available commands. The user may step through a simulation one event

at a time, or specify stopping points. The < "fu I 7 trace"> command causes every variable

to be reported at each event, allowing the user to follow the sequence of events in a

47

II 3

I'S

now.'

8.48

sinmulaion, and to search for logic error should Mures occur. Appendix D is a short section

of the debugger's output when the < "fu II trace O> command is active.

49

MI. MODEL MODIFICATIONS

A. OVERVIEW

The FDDI station model provided with OPNET is shown by Schenone (1993) to

perform as expected by performance equations provided by research literature, for example,

Dykeman and Bux (1988). However, the model as given lacks the flexibility to adequately

demonstrate the characteristics and metrics required to formulate recommendations for the

development of a CDL network interface. To begin, no way exists in the original model to

monitor the throughput and delay statistics of synchronous traffic separately from

asynchronous traffic. In addition, the code must be modified to allow the implementation of

different asynchronous priority levels, and further altered to allow the generation of statistics

of these subcategories. Also desirable is a method to hold traffic in the sink process of one

station on the LAN, rather than destroying all packets, so that a bridging protocol may

eventually be developed for communication between LANs, which is the ultimate goal of the

Common Data Link Project. Finally, a multicast/broadcast facility, by which a packet may

be addressed to multiple stations, is needed. Modifications implementing these features were

generated for this thesis, and are described in this chapter. Appendices E, F, and G contain

the final form of the "C" programs representing the process models "fddimacmul t",

"fddt _gen_mu ult", and "fddi_sin k_mu1t", respectively. All contain inserted comments

to indicate where changes have been made. In some cases, modifications are extensive

50

enough that the original structure is not apparent. For these cases the reader who is

interested in comparisons is referred to the original code available in the Process Editor.

The modifications described here were suggested in large part from readings in the

research literature. In particular, Tari, Schaffer, Poon and Mick (1991) published results

generated from another commer-cially produced network simulation tool, the Block Oriented

Network Simulator (BONeS*), demonstrating that increased asynchronous offered traffic

load has minimal effect on the throughput of synchronous voice data traffic. At the same

time, the throughput of the various asynchronous levels was shown to degrade in order of

priority with increasing asynchronous offered load. These findings emphasize the fact that

OPNET has no facility in place providing for the monitoring and plotting of throughput or

delay data in respect to class or priority levels.

Closely interrelated are the setting of asynchronous priority levels, a system of

subqueues to segregate traffic by priority, and the gathering and display of performance

statistics according to priority. In the following discussion, reference is sometimes made from

one to the others before all are complete.

B. PRIORITIZATION

1. Activating Prioritization in OPNET's FDDI Model

As given in the original released model, code exists to support a prioritization

scheme, but it is not implemented. The station model includes a priority field that may be set

in the Node Editor, but no setting will take effect until the INIT state in the MAC process is

51

modified. As given, T-Pri[1) is simply assigned the value <Fddf_-..Opr> (which is the

negotiated value of TTRT, with the negotition consisting of selton of the lowest requested

T_Req from all stations) for all priority settings i, resulting in no distinction made between

priorities. The state TXDATA in the MAC process model contains the code that determines

transmission eligibility, then transmits packets if timing conditions are satisfied. The user

should notice here that unlike the real FDDI protocol, the Token Holding Timer is

incremented from zero to thtvvalue (THT), not decremented from THT to zero. This

results in a reorientation of TPr Ii I settings, wherein higher settings allow a larger

transmission window, and therefore, higher priority. To re-emphasize: in the OPNET

model, T_Pri f Ei is larger for higher priority stations. Actual settings of T_Pri [1 I are a

matter of user's choice and real-world physical characteristics. One quick approach is to alter

the code in IT from the original:

for (i - 0; 1 (8; 1+-+)

T_Prl [i] - Fddi_T_Opr:

by substituting the text:

T_Pri [i) = (double)FtdiTOpr/(8-i):

to impart some weight to the priority settings (Appendix E, line 250). Note that priority

settings in OPNET are counted from zero to seven, in keeping with the "C" programming

52

language convention of numbering elements of an N-element array from zero to N- I. As

mentioned earlier, actual FDDI convention numbers the priority settings from one to eight.

2. Changing the Scheme and the Code

For the purposes of CDL, an ability in a station to generate traffic of differing

priorities is a desirable characteristic. The modifications discussed here allow this behavior,

though with a certain amount of abstraction included. Essentially, each packet generated in

the source process is assigned a priority setting, in a manner that is functionally identical to

the determination of the destination address. However, the priority of one packet has no

influence on the priority of the next one generated at the same station. Of course in

real-world transmissions, packets are grouped into messages, meaning that thousands of

consecutive packet arrivals should have the same priority settings to reflect real behavior. In

fact, the subqueue structure imparted to the MAC causes outgoing packets to be sent in

decreasing order of priority, thereby modeling expected behavior to some small degree. More

significantly, the user should keep in mind that the model's purpose is to model a LAN's

handling of the traffic it does receive. The fact that packets are transmitted with random

priorities in a scattershot fashion is not significant to the LAN's overall performance.

3. Subqueues

Because subqueues are essential to the development of the prioritization scheme,

their construction is addressed first. As is seen in the FDDI station model in the Node Editor,

the MAC node is represented as a queue. Therefore, only a change to "subqueue count-

field in the attributes menu is necessary to change the MAC's structure into a bank of

subqueues. Code is already in place that treats the MAC as a set of subqueues, although by

53

default, only one is available at first (this is labelled <subqueue (0)>, as is seen when the

"subqueues" field is selected from the on-screen • ttributes menu for the MAC node. Nine

subqueues are desired here: one for each asynchronou priority setting plus another to handle

synchronous traffic, Subqueue indexing corresponds to priority settings, so that subqueue

(0) receives and releases the lowest priority asynchronous traffic, while subqueue (7) is

assigned the highest priority traffic. Subqueue (8) is designated for synchronous traffic. This

segregation of traffic into subqueues is necessary to support the recording of performance

statistics and plots of traffic generation through the use of the Probe Editor. Also, while the

Kernel Procedures (KP) available to the user include one that allows packets to be removed

from the transmission queue in order of priority, rather than in the usual first-in-first-out

(FIFO) order, subqueues allow simpler logic (Vols. 5.0 and 5.1 are directories of the

commands and functions used by OPNET*). Vol. 2.0, Modeling Manual, #Nddef* pp.

27-29, describes the procedure to adjust code so that references to queues may be replaced

with references to subqueues, particularly in relation to prioritization schemes. In summary,

the subqueues represent a way point for packets. They are created and assigned a priority

setting in the source, encapsulated for transmission in the MAC (ENCAP state), and placed

in the appropriate subqueue while the station awaits the next token arrival to transmit them.

"L "RCV TK"

In the RCVTK (receive token) state, the first test of token usability is a

determination of the presence of outbound traffic. The statement:

if (op_q.stat (OPCQSTATPKSIZE) > 0.0)
... etc ...

54

calls for an inspection of the queue. This statement is replaced with a loop structure that

searches all subqueues:

for (i - NUM_PRIOS 1: 1 > -1; 1--)

if (opsubqstat (i. OPC_OSTAT_PKSIZE) > 0.0)
... etc ...

(Appendix E, line 453)

Of course the above requires a declaration of the variable NUM_PRI OS and

the loop counter i.

b. "7X DATA"

The TXDATA (transmit data) state contains the code that transmits

packets while the token remains available, and monitors THT. The THT (tht-value) is

checked inside a loop whose condition is, "while packets remain in the queue, transmit." This

loop contains most of the code in TXDATA. This condition must be set inside another loop

which counts through each desired subqueue, and which must include an additional number

of "break loop" points. Accordingly, the code:

while (opq_stat (OPCOSTATPKSIZE) > 0.0)

/* Remove the next frame for transmission.*/
pkptr - op-subq_pk-remove (O.OPC_QPOS_HEAD):

... etc ...

is rendered into the following:

55

for (i - NUM_PRIOS - 1; 1 > -1; i--)

{ while (op...subq-..stat (i, OPC...OSTAT...PKSIZE) > 0.0)

/* Remove the next frame for " ansmission.*/
pkptr - op-subqppk-remove (O.OPCOPOSHEAD):
... etc ...

1

(Appendix E, line 920)

The transmission loop is broken when any of the following occur:

"- No more packets are enqueued.

" In the case of srnchronous tram sion, insufficient bandwidth

remas to complete a transmission. (Note that synchronous traffic

is allocated by the user an inviolate amount of time in which to

transmit, regardless of the lateness of the token However, the

mode checks the bmndwidtli :emaining to ensure a transmission can

be completed within the allotted time, and will not commence a

s that would delay the token. This is in agreement with

the actual protocol, and in contrast to the asynchronous case, in

which packet transmission may commence while the THT is active,

evm if the transmission will keep the token past THT expiration.)

The remaining packets are of too low a priority to be transmitted in

thetimeremainingtoTH-rr(T_Pri[i] < THT).

After closure of the outer loop, the station deregisters its interest in the

token by indicating it has no more traffic to send. This information is used by the token

56

acceleration mechanism, which will destroy the token for the time period no station has traffic

to transmit, then recreate it when needed, thereby significantly reducing the number of evernts

and the amount of time spent in a sinmulation. The original code appears at the bottom of the

TXDATA state:

if (tk_ iistered && op_q-stat (OPC_QSTAT_PKSIZE) -- 0.0)

tk_ :gistered - 0:
fddi_tk-deregister ():

As before, this must be altered to search through a set of subqueues first

before deciding no traffic remains to be sent:

q-check - 1;
for (i - NUMPRIOS - 1; i < -1; 1--)
{

if (op-subq.stat (i. OPC_OSTATPKSIZE) -- 0.0)

q-check - 0;

else

q-check - 1;
break;

I

if (tk-registered && qcheck - 0)

tkregistered - 0;
fddi_tk-deregister ();

(Appendix E, line 1084)

57

4. Modifications to Prioritization

In order to enact the priority scheme described above, changes are needed in the

station model (Node Editor), all three process models (Process Editor), packet format

(Parameter Editor), and to the Environment file (UNIX text editor).

a. Stlun Model Changes

For the modified priority scheme, new attributes are needed in the

on-screen menus that appear for the mac node of the fddistation model in the Node

Editor. The original field "priority" is left in place, but not used. Note that the "super

priority" field (described in Vol. 6.0, External Interfaces Mmuau, "Rel," p. 15) is not

related to the FDDI protocol, but is a tool for scheduling of events in the simulation; it is not

used, and should be left disabled.

In order to support the priority setting protocol that occurs in the source

model (described later), two new attributes are created: "high pkt priority" and "low pkt

priority." The new fields are created as listed in the following steps:

I. Call the on-screen attributes menu for the "mac" node.

2. Place the cursor over the "extended attrs" field, and press the left mouse

button to call the submenu (the right mouse button dismisses the attributes menu;

try again).

3. Assign the fields as shown in Figure 20: names will be "low pkt priority"

and "high pkt priority",units are <none>, type is < integer> (selected from

another on-screen menu that will appear,

58

(csrc) httribtes

beoui intrpt enabled

endsix intrpt disabled -

failure intrpU : disabledfl

recovery intrpts disabled am

priority 0 U
super priority disabled

icon fum processor U~o.sit
extendd attr. -- >

[1m-- II.Lt Ipp De• It-ut I
hIb~k pkzt pri~or±tp none Antegez 05

II
1w pkt prioitp nneu integter 0

Figure 20. Adding Extended Attributes to the Station Model

59

rather than typed in), and defaults are at the user's discretion. Zero for both are

reasonable. These assignments are preserved with the keyboard combination

<CTRL+S>. Further, the model must be saved using the "Write Node Model"

icon, as described in Vol. 4.0, Tool Operations Manual, "Nd," pp.13-1S.

4. Once the model is saved, then called again to the Node Editor, unexpected values

will probably appear in the fields corresponding to the new attributes (which will

now appear in the primary on-screen menu as well as in the "extended attrs"

submenu). These values should be set to <promoted> so that they may be

assigned in the Environment file. To set the newly created field to <promoted>,

place the cursor over the field, then type <CNTL+O> at the keyboard, invoking the

literal "promoted."

This last item is not described in the manuals; it was obtained from MIL 3,

Inc.'s technical support via electronic mail.

b. Envronment File Changes

Corresponding to the attributes created and then assigned <promoted>

fields above, the following code is added to the Environment file:

"*.*.11c_src.high pkt priority" 7
"*.*.llc src.low pkt priority" 0

The quotation marks are required here because of the spaces in the attribute names. Had

1 owpkt-pr i o r i ty been used instead, then the quotation marks would have been omitted.

Examples of both styles appear in Appendix H, an example Environment file that includes all

60

attriiues added to the model (some of which are still to be described). The Environment file

may be modified in the UNIX text editor. Pound signs (#) indicate comments. Order of

attributes is not significant, and any attributes not used by a model are simply ignored.

c. Source Modificaions

The approach to assigning a random priority to each packet as its arrival

is generated is functionally identical to the procedure by which the destination address is

generated. The OPNET' kernel function op.i maobJ_a tt r_get () is used to call attributes

from the node model or from the Environment file. The KP op_d i s t_l oad () is used to load

a distribution to be used in generating a stream of stochastic values. These are used in the

source process model "f ddlgen" INIT state in the following manner:

op_ima_attrget(my-idThigh pkt priority,
&high_pkt-priori ty) ;

op_imaattrget(my-id.'Iow pkt priority'
&low pkt-priority);

pktpriorityptr = opdistload ('uniform_int',
low-pkt-priority. &high-pkt-priority);

(Appendix F, line 108)

In the preceding, the first two lines call the desired attributes from the

Environment file to the calling station ("my-i d"). The second field in the procedure call is

taken verbatim from the Environment file, while the third field is the address of the attribute.

The address may have any name; <& h i ghft-pk t_p rprio r i ty> is purely a memory aid for the

user, and is not required by syntax to resemble the field name to which it is assigned. The

value returned by op_dist_load() is used in the ARRIVAL state to finally generate the

priority setting with the statement:

61

pktprlo - op-dist_outcome (pktpriority-ptr);

(Appendix F, line 195)

which finally returns an integer between the values set in the Environment file. This integer

is assigned to the packet with the commands:

oppk nfdset (pkptr. "pril, pkt-prlo);

op_ici_attrset (macIciptr, "prim, pkt-prio);

(Appendix F, line 214)

Where only one priority setting is desired for a particular station, the

attributes need only be both set to that desired value, with the station specified in the

Environment file. A limitation here is similar to that of addressing: any section of values

from zero to seven may be chosen, but it is not possible, for example, to assign a station the

asynchronous priority settings two, four, and six.

In the SY (State Variable) edit window, highpktpriority and

l ow-pkt1.priori ty are declared asi negers, and pkt-priori ty_p1tr is declared as a pointer

of type "Distribution." Because OPNET uses a form of proto-C, the declarations made in

the editor actually have the following form:

62

Distribution* \pkt-priorityptr;
Int \high-pktpriority:
int \lowpkt_p r riority:

(Appendix F, line 9)

When the code is compiled and the ".C" icon is invoked to present the

entire process model code, the above will have the following appearance:

Distribution* svpkt-priority-ptr;
int sv-high-pkt-priority;
int sv_low-pkt_p.ripority;

OPNET will also produce the following in the ".C" code:

#define pktpriority.ptr
prstateptr->sv-pktpri ori typtr

#define high._pktpriority
pr_stateptr->svhi gh-pkt-priiori ty

#define lowpkt_priority
prstateptr->sv-low-pkt-prpi ori ty

(Appendix F, line 44)

The above commands have the effect of choosing, on a uniform

distribution, a priority setting from a given range whose endpoints are retrieved from the

Environment file.

d MAC Modifica&,,s

Because a priority scheme is already supported in the original model, little

change is required in the mac node once a priority value is assigned in the source node. The

user should note that communication between nodes is conducted with locally held variables;

globals are avoided. This may result in different declared variable names for the same data,

63

which is acceptable. Thus, the pri of the source becomes the reqprl of the mac node. In

the MAC node, priority settings are used as the indexes for the subqueues. NUM_PRI OS is

declared for use as a loop counter.

e- Sink Node Modificatons

The changes to the "fddl._slnk" process are nearly all related to the

generation of performance parameters, which are discussed in the next section. In the original

model, the received packet's priority setting is not even relayed to the sink, since the only

information necessary to the calculation of overall throughput and delay statistics are the

packet's creation time and its time of receipt. A fundamental addition to the code in the

DISCARD state is the line:

op_pk_nfdget (pkptr. "prl'. &prLset):

(Appendix F, line 78)

which recovers the priority from the field "pri- in the frame structure fddi_1 1 c_fr. With

this information, additional modifications will bring about the ability to create throughput and

delay information for each asynchronous priority setting, and also to separate synchronous

traffic statistics from asynchronous. But before any of this will work, the fd di_ 1 c_f r

packet structure must be modified.

f Packet Format

The frame that is created in the source and passed to the MAC, then

encapsulated into a more extesive frame, then ultimately passed from the destination station's

MAC to the sink process for accounting and final destruction, is of the format fd di_ I c_f r.

64

To support the priontization scheme, the format needs to include more information than only

the frame's creation time. To enhance its characteristics, the Parameter Editor's "Packet

Format" icon is invoked, and the format fddl_11 c_fr is called. Another line is added, as

shown in Figure 21, making "priority" an attribute of the packet. Type is set to

"I nteger." size can be "0," default value is *0," and default set is "unset." The changes are

saved with the "Writ e Model" icon.

C. PERFORMANCE MEASURES

1. Overview

OPNET's original FDDI LAN model provides no ready way to monitor

synchronous traffic separately from asynchronous, and no way to monitor the throughput and

delay statistics for individual asynchronous levels. The inability of OPNET's original FDDI

model to provide anything besides overall performance is a serious limitation to its usefulness

in the CDL project. A major goal of this work is to augment the code in the sink process so

that additional output vectors are generated, allowing the effects on individual class and

priority levels to be seen. For example, in the original model, the user may assign any desired

proportion of the generated traffic to be synchronous, but the original model has no facility

to measure the synchronous traffic alone. The following paragraphs describe the

modifications made to allow the display of statistics segregated by class and priority.

As an incidental note, the user should realize there is no particular significance

to the sequence in which the states appear in the ".C" file. That is, the order DISCARD,

65

gloom

MS""g ID %-d

Fipr _ _ digaNwFedt he"diH-r rm ona

I-Il6-

STATS, then INIT that appears in the "fddilsl nk" process code is no indication of the

sequence in which the simulation "visits" these states for each station. In fact, the more

logical order, INIT, DISCARD, then STATS will be followed in this discussion, though

preceded by a discussion of the variables needed. Appendix G is the file

"fddt_stnk_mult.pr.c", containing the modifications described here.

2. Variables

There are essentially four primary variables of interest in the sink process model:

fddisinkaccumdelay, fddi_slnk-total-pkts, fddt_sinktotal_bits, and

fddi_sink_peakk_de1ay. These exist as si4eintegers or as floating point numbers, and are

incremented or recomputed as packets are received by the station. The overall idea is to

expand these into vector arrays, in which each element represents a running total for one

priority setting, with the last element representing synchronous traffic totals. As mentioned

earlier, this approach requires the "fddi_mac_fr" format in the Parameter Editor to be

modified to include the priority as a field, since the original model needs only the packets'

creation time and time of arrival in order to compute the overall throughput, mean delay, and

end-to-end delay. However, as was discovered through trial and error, while the given

variables can be changed to vector arrays, and the model can be modified to accommodate

the new structure, and the code will compile (if the syntax is correct), any attempted

simulation will abort with a segmentation violation error. This is because the "C" programs,

which may be modified by the user, must interface with OPNET~s kernel procedures, which

are beyond the user's access. Ultimately, the given variables must be kept and new ones

67

created. Since the overall performance remins a useful statistic, the variables mentioned are

left in place, while new ones are declared with the desired vector structure. These are

fddi_sinkaccum_delaya, fddl1_sinktotal_pktss_a, fddl1_sinktotal _bits-a, and

fddl_slnkpeak.delaya, which are declared and initialized in the Header Block.

The folMowing declarations are added to the State Variables section:

Gshandle \thrugshandle_a[lO];
Gshandle \mndelay-gshandle-a[1O]:
Gshandle \ete_delay-gshandle-a(9];

Once compiled, the following appear in the ".C" file:

Gshandle svthru-gshandle-a[IO);
Gshandle svmdelaygshandle-a[1O);
Gshandle svetedelaygshandle_a[9);
#define thrugshandlea pr-state-ptr->sv-thru-gshandle_a
#define m-delay-gshandle-a

prstateptr->sv_m_delaygshandle_a
#define etedelay-gshandee_a pr_state-ptr-

>sv_ete_de1ay.gshandle_a

(Appendix G, line 43)

With these declarations in place, the modifications to the rest of the code are

straightforward, and generally follow the examples set by the original code. In addition, the

variables OfferedLoad and AsynchOfferedLoad are declared for use in generating scalar

plots over a series of simulations. These are assigned values called from the Environment file

by the state STATS.

68

3 nimitialization State

The primary purpose of the Initialization State is to assign handles to the global

statistics that are generated at the end of the simulation. The "KP" statement

opstatglobalreg (<gstat_name>) returns a handle used to reference a globally

accessible statistic. This handle is needed to fiunish new values (as they arrive with new

packets) for the "KP" op-statgl obal _wri te(), which appears in the DISCARD state. The

field entry <gs ta t_name> is the text in the on-screen menu that appears in the Analysis Tool

when the Create Single Vector Panel or "Create Multi Vector Panel" icons are

invoked. The code added is very similar to what is already in place. For example:

thru-gshandle-a[O] = opstatglobal-reg ('pri 1 thruput

(bps)'):

(Appendix G, line 325)

creates a handle for the collection of data for priority I level throughput, and creates a field

which will appear in the on-screen menu in the Analysis Tool. In another example:

m.delaygshandle_a[9] - op-stat-global-reg (*async mean

delay (sec)');

(Appendix G, fine 364)

creates a handle for total asynchronous mean delay, and generates another field which will

appear in the on-screen menu in the Analysis Tool. Each priority level has its corresponding

handle assignment line. The actual statistics to accompany these handles are generated in the

DISCARD state. As seen in the code itself (Appendix G), each element has a handle

assignment line, for throughput, mean delay, and end- to-end delay. Figure 22 shows off the

69

resulting on-screen menu from the "Create Single Vector Panel" icon, reflecting the

new data that may be plotted. Note that the code here reconciles "Cm language vector

numbering conventions with real-world priority level settinp.

4. "DISCARD" State

The DISCARD state is where the received packet is "opened" and statistics

generated from the packet contents. As mentioned before, "KP" op-stat-gl obal_wri te

(<gstat_handle>. < value>) is the statement that accumulates data. The < va lue> field

may be a previously computed figure, or may be calculated within the "KP". The

<gstat-handle> field is the same used in the INIT state. DISCARD uses the priority value

found with the arriving packet as the index for the vector structure. For example:

opstatglobalwrlte (thru-gshandle_a[5].

fddi_sinktotal_blts-a[5] / op_sim-timet):

(Appendix G, line 128)

generates a current throughput figure for asynchronous priority level six (recall the necessary

offset for vector element numbering convention) Also necessary is the recording of delay

values for each priority, which is done with the following :

op-stat-global-wryite (etedelaygshandle_a[priset],

delay);

(Appendix G, line 182)

This state also destroys the packet once its contents are recorded. This is necessary to

prevent the simulation from filling the host computer's memory with dead packets.

70

Dwgmlw piL nk -- (n

11T 8 w- a"p) m M dour (imps
p~. n3 -04WaI ~m

P" (ps 1. 4@-U- e~m io
90111111 9i pat 3 M6t- ddl impa-~~~~dm is pa0-en m I

Ip a _______________ p"i 6 pmpl.d bol" msi I

pt m (e) pas 7 pi-ft-ion fijn ge,

PMa I mm "1. ($me) pea3 smo-tomo- dfi r :mm i

pSI7m m ip (log.) jos mon-ftm-inm~ (mg :W
Pr pe n dolo I~q mem-.)P 6m. at-Is-in U&p m .

Figure 22. Newly Created Vector Traces Availale

71

S. "STATS" State

The STATS state produces the steady-state scalar data that may plotted using the

"Create Scalar Panel" icon. These are saved, rather than written over, so that the user

may observe changes to output as the input is varied. For example, the throughput of

synchronous traffic over several simulations as different TTRT values are used. From these,

a plot of throughput vs. TTRT may be generated. The statement:

op_statscalarwrite (<scstat_name>, <value>);

is similar to the "wri te" command described before, and writes a scalar steady-state statistic

in this case. The field "scstat" appears in the on-screen menu called with the "Create

Scalar Panel" icon. Examples of the use of this statement appear in Appendix G, fines

210-226.

Another on-screen menu line item is drawn from the Environment file. The

values < tota Ioffered_ joad> and <asynch_ offered- load> are placed and assigned in

the Environment file (see Appendix H), as described earlier. These correspond to the

72

variables AsynchOffered_Load and OfferedLoad declared in the header block. These are

joined by the commands:

opi1ma_sim_attr_get (OPCIMA_DOUBLE,
"totaloffered_load*. &OfferedLoad);

op-ima-sim_attr-get (OPCIMA_DOUBLE.
"asynchofferedloadn, &AsynchOffered_Load);

(Appendix G, line 299)

and added to the onscreen menu with the commands:

opstat-scalarwrite ('Total Offered Load (Mbps)'.
Offered-Load);

op.statscalarwrite ('Asynchronous Offered Load (Mbps)',
AsynchOfferedLoad);

(Appendix G, line 305)

This code in Appendix G contains a warning to the user that the offered load

settings are not automatically updated in any way. If the user desires to plot throughout or

delay as a fimction of offered load over a series of simulations, then the user must remember

to keep the offered load assignments current in the Environment file for each simulation.

D. BRIDGE LINK

The alteration described here represents a simple first step toward a network interface.

Instead of destroying frames after they are received, one station on the LAN is modified to

hold its packets in subqueues. Further development will bring about a protocol for removing

these buffered packets from the original LAN and transferring them to another.

73

1. Station Model Modifications

The received frames are stored in subqueues according to their priority in a

manner analogous to that already described for the mac node. This requires that the s i nk

node, 11 c-s i n k, be changed from its original processor form into a queue node. To affect

this modification to the station model, the following steps are followed:

1. The s i n k node is selected by placing the cursor over it and clicking the left

mouse button.

2. The node is removed by invoking the "Cut- icon. The "Packet Stream"

between the sink and the mac also disappears.

3. Trhe "Create Queue" icon is selected, and the resulting box is dragged to the

location just vacated. Clicking the left mouse button places the new node. The

station now has a queue node rather than a processor node.

4. The on-screen attributes menus is called with the right mouse button, and the

fields are all set to the same values that were in effect before, including the node

name.

5. The "process model" field will be set to the newly modified sink process

model. If the process has not yet been modified, then the original assignment

may be used, then changed when the process has been modified and saved under

a new filename.

6. The "subqueues" field is set to <9>, accommodating eight levels of

asynchronous traffic and also synchronous traffic.

74

7. The packet stream line between the s i n k and the mac nodes must be replaced.

8. The new station model is saved under a new filename, for example,

< "fddi_s ink_ I ink>.

Figure 23 shows the resulting station model, with the appropriate on-screen

attributes menu.

2. Process Model Modifications

The changes to the process model code are few, and are included in Appendix G

as inactive code ("commented out"). The code that destroys received packets:

oppk-destroy (pkptr);

(Appendix G, line 98)

is replaced by code that enqueues the packets according to their priority settings:

opsubqpk_insert (pri-set. pkptr, OPCOPOS.TAIL);

(Appendix G, line 105)

The user should realize that for the moment, no more code exists for the

disposition of these enqueued packets; a long simulation simply accumulates packets and fills

computer memory. The subqueues are infinite by default, but may be limited (using another

on-screen menu) to demonstrate overflows. In that case, there is no code for the disposition

of packets that are lost through buffer overflow, and these will simply accumulate in the host

computer's memory as well. In sum, the user must be aware of the memory demands of

OPNET simulations.

75

Avai bes guqueues *

Uc~*src c php bqubque t (1)

(Ucsirubqk) (2)ibte quo (

subqueu counteu (3

"msubquuoeu(6
Il-intkp intervl (i7)le

faiure intzts isale

~ eoeyintrpts disraldabled

priority 0
super priority disabledM
icon name queue

Extended attrs. ->

Figure 23. Modified Station Model, "fddi sink link"

76

E. MULTICAST

1. Overview

Multicast is the addressing of a packet to more than one station. Broadcast is a

special case with the transmission of the packet to all stations. In the original model, a station

desiring to send the same message to all stations would repeat the packet transmission for

each destination station. Actually, this last is an abstraction; OPNET simply generates

packets from each station addressed to randomly generated destinations, with no indication

that any particular transmission represents a copy of any previous transmission. However,

the fact remains that each packet is addressed to only one station. In the actual FDDI

protocol, each packet is passed from station to station until it reaches its destination, but then

continues past its destination until it is finally removed from the ring by its originating station.

The OPNET' simulation economizes on the number of simulation events (and therefore the

simulation time) by having the destination stations remove the packets they receive. This

occurs in the mac state FR_REPEAT, which also contains comments suggesting that the user

may wish to overrule this economizing feature in the event that group addressing is desired.

Figure 24 is the State Transition Diagram for the mac process, repeated from Figure 6 for the

reader's reference. The state FRSTRIP includes the code by which an originating station

removes packets that have completed a circuit of the LAN. It is not used in the original code,

nor will it be used in the modifications described here.

77

1mowMm.)

(i a *k1 t ((lC. i)

3•
m~ .smvm

-- -- -----

Iab~

Figure 24. MAC Process Model State Transition Diagram

78

The basic idea is as follows: rather than carry a destination address, each packet

carries an array with a number of elements equal to the number of stations on the ring. These

elements are simply ones and zeros, with a one indicating by its location that the packet is

addressed to a station corresponding to that location. For example, in a five station LAN, the

address field [0 1 0 1 1] would indicate the packet is addressed to stations one, three, and

four (as in the case of indexing vector array elements, the stations on an N-station LAN in

OPNET' are numbered from zero to N- I). As the packet is passed around the LAN, each

station inspects this array, passing the packet on if the station is not designated a destination

address. Destination addresses keep a copy of the packet's information, set their place in the

address field to zero, then pass the packet on to the next station. The last destination address

will destroy the packet after verification that only zeros remain in the destination address

array, thereby preserving some of the economy gained in minimizing the number of events in

the simulation. While the destination address array would need to be transported with each

packet, OPNET's Kernel Procedures can only accommodate a pointer to the array. The

following sections describe the changes necessary to effect multiple addressing. The reader

is again referred to Appendices E, F and G, containing the ".C" files for the MAC, source, and

sink process models, respectively. However, the implementation of multicasting involves no

changes to the sink process model.

79

2. Environment File

Each station is assigned a maximum and a minimum number of possible

destination addresses to use in addressing each packet. The following are added to the

Environment file:

"*.*.llc_src.min num addees': <user assigned integer>
"*.*.llcsrc.max num addees": <user assigned integer>

These will be called by the source process model's INIT state. Appendix H

contains an example Environment file including these new attributes. The minimum number

must be at least one, and the manmum should be no greater than N- 1, where N is the number

of stations (the logic written in the source model's code does not allow stations to address

packets to themselves). if it is desired that some station generate no traffic, then the

"arrival rate" field should beset to zero. Setting"mln num addees" and "max num

addees" to zero will only result in packets transmitted with no destination addresses

assigned. Setting "max num addees" to a number greater than N-1 will cause an endless

loop in the code that generates destination address assignments in the source process (the

logic in the loop is, "assign x different destinations, but do not repeat any.").

3. Station Model

The additions to the environment file must be added to the station model in the

Node Editor, in a manner analogous to the method described in the discussion of

prioritization (I.B.4.a. Station Model Changes). The steps required to add another attribute

to the on-screen menu are not recounted here, but the desired final result is shown in

80

Figure 25. It is a good practice to save the changed station model under a new name, for

example < "fddi_s ta-mu I t">, until the user is certain that the modifications do more good

than harm to the original model.

4. Source Process Model

A real packet on a real LAN would necessarily be self- contained, carrying with

it all its destination addresses. However, the finctions used to assign the packet address field

in OPNET will not support a vector structure, and so pointers to memory locations must be

used, with these memory locations containing the destination addresses. The modifications

to the source process to effect multiple addressing are summarized in the following sections.

As is the case with the station node model, each of the process models should be saved under

new names, for example fdditgenmul t, as a matter of practice.

a. Variables

To begin, a global variable, NUMSTATIONS, is defined in the Header Block

(it is also defined in the mac process model), to be used as a loop counter. This variable must

be kept updated to accurately reflect the correct number of stations on the FDDI LAN. This

is easily forgotten when different LANs are created, using the same station model with

different numbers of stations.

As was mentioned, the destination address field, originally a single integer

value, must now be made a pointer to an array of integers. Although "C" programming

language treats the name of a vector array as the array's pointer, the established Kernel

Procedures do not support the simple change of syntax. In short, a new variable, *da_ptr

(destination address pointer), is declared as an integer pointer in the Temporary Variables

81

8 E

(11csre) Attributes (U .rc) Ittribtes

name Uz...rc icon l processor

process modsl fddi..gea..,mlt, ewtoded attno --
intrpt interval disabled m high pkt priority promoted

begsis intrpt enabled la0w pkt priority promoted

eadaaa intrpt, disabled man ma addees promoted
failure intrpts disabled w= =a addes* promoted
recovery intrpte disabled low dest address promoted
priority 0 1high dest address promoted

low pkt prio.rip Iae nteger 5

I. __

Figure 25. Multicast-Capable FDDI Station with Attributes Menus

82

(TV) editor. The original variable, dest-add r, is removed from the TV section, and declared

with the State Variables (SV) as an array ofintegers, with dimensions NUMSTAT IONS + 13.

In addition, variables to accompany the Environment file attributes are declared with the

State Variables: mi nnumaddees and maxnumaddees. The resemblance between these

variables and the attributes they accompany is meaningless in respect to "C" language syntax,

but is of course a useful memory aid to the user. The pointer numaddees-dist-ptr

represents the value used in determining stochastic values. Also, the integer num_addees is

declared in the State Variables, to represent the number of stations to which a given packet

will be assigned. It is used as a loop counter, and will be different for each packet.

b. nitialitation State

In the source models Initialization state, the range bounding the number

of destination addresses is determined with a cal to the Environment file:

opimaobj-attrget(my_id, "min num addees".
&min-num-addees);

op imaobjattr_get(my_id. *max num addees".
&max-num-addees);

(Appendix F, line 86)

83

These result in the assignment of the values from the Environment file to

the addresses of the corresponding variables. A distribution is established with the following:

numaddeesdist_ptr - opdistload (*uniformint".

min num addees, max_numaddees);

(Appendix F, line 114)

This value is used to generate streams of stochastic values, and is used in

the ARRIVAL state.

c. ARIAL' o Staft

In the ARRIVAL state, the actual number of stations to receive the new

packet is determined, and then a loop is used to choose these stations one at a time. Each

loop iteration is very similar to the original procedure that was in place when only one station

was assigned to each packet The loop contains a provision to prevent the repeated

assignment of the same station, and also to prevent the assignment of the originating station

as a destination address The following statement determines the number of destination

addresses for a given packet

num_addees - opdist_outcome (numaddeesdistptr);

(Appendix F, line 172)

84

The following loop is used to find and assign the chosen stations:

for (i - num-addees: i > 0; 1--)
I

gen-packet:
nix - op-dist-outcome (destdist_ptr);
if (dest-addr[nix] - 1 11 nix - stationaddr)

goto gen-packet;

destaddrEnix] - 1;

(Appendix F, line 174)

This loop continues to iterate until the specified number of stations, without repetition, is

assigned.

Recall that the destination address array is declared with one element more than the

numberofstationsintheLAN (dest_addr ENUMSTATIONS + 1]). Here, all the elements

in the destination array must be shifted one space to the right, and a simple loop is used to set

dest_addrEi+1] equal to dest-addr [i1, for i iterations. This step is necessary because

the first array element will be overwritten with the array's memory address in the course of

the packet's travels, as it is transmitted from one station, received by the next, and its

destination address field is opened, inspected, then closed by each station in turn. This

behavior is verified by use of the debug tool set to "fulitrace." accompanied by

strategically placed p r i n t f statements. The author does not pretend to know why this

happens. The array element shift is a deft enough way to sidestep the problem. However,

all refrences in other states to the destination address array must be offset to accommodate

this shift.

85

5. MAC Process Model

The MAC process model receives each packet, inspects it, the decides whether

or not the packet is addressed to the station. In the original model, the packet is removed

from the ring by the destination station, and relayed by other stations. With multicasting of

packets, a third case arises, in which a station receives a packet addressed to it, but must also

pass the packet on to other destination stations. A number of print commands are placed in

the code, but left inactive. They are of much use in the verification of the model's operation.

a. Variables

The same variable NUMSTAT IONS used in the source model is also defined

in the Header Block of the MAC. The user must remember to keep this value updated in both

places when the same station model is used in a different size LAN. The destination address

is changed from an integer into an open-ended array of integers, dest_addr[l, in the

Temporary Variables editor. An integer pointer, *daptr, is declared as well.

b. Encapsulation State

The Encapsulation state receives frames from the source process, and place

them inside the format fdd i-mac_fr for transmission on the LAN. An intermediate step is

to inspect the frame received from the source for its destination address, which must be

written into the encapsulating frame's destination address field as well. The original

statement:

op_iciattrget (ici-ptr, "dest_addr", &dest_addr);

86

is unworkable with dest_addr in array form, which is why the pointer *da.ptr is declared

Instead, the following is used:

op ici _attrget (Ici ptr. "destaddr*. &da ptr);

(Appendix E, line 806)

followed by a loop assigning each element in the array a value from the corresponding

lement in the array found at address da-ptr. Vol. 50, Simuation Kernel Manual, discusses

this command statement. This loop uses as a counter the value NUMSTATIONS+I, for the

reason mentioned earlier: use of a pr i n t f statement would reveal that the first element in

the array has been written over and replaced with a number representing the memory address

of the array. Fortunately, the entire original array of zeros and ones has been shifted, so the

first element is intact. Correspondingly, all references to the array from within the MAC

process must be made with respect to this shi••.

C Frame Repeat State

The Frame Repeat state inspects each received packet and acts on one of

three cases: the packet is addressed only to this station, or the packet is not addressed to this

station at all, or the packet is addressed to this station and to other stations as well. The first

two cases are already present in the original model, and require some simple modifications.

The third case represents a significant change, requiring the addition of an entire block of

code to the state, in which the packet information is copied first, then passed on to the next

station.

87

The first statement in the FRREPEAT state opens the arriving peckees

address field for inspection:

oppknfd-get (pkptr, "dest_addre. &da-ptr);

(Appendix E, line 604)

Here, &da-ptr has been substituted for the original &dest-addr. As is the case in the

ENCAP state, the arriving pointer is used to mitialize the locally held destiation address

array:

for (1- 0; 1 (NUMSTATIONS+1: i4+)

dest-addr[1i - da.ptr[l];

(Appendix E, line 610)

This destination address array is then passed through a loop to determine if it has more than

one destination address, and to see if the element corresponding to this station is set to one,

indicating the packet is addressed to this station. If the packet proves to be addressed to this

station only, then the actions of the original code are carried out: relevant fields are copied

to an ICI packet format for transmission to the sink process, then the packet is destroyed.

If inspection of the destination address array shows the packet is not addressed to this station

at all, the original code is again sufficient to place the packet back on the ring.

The third case represents a new situation. When the packet is addressed

to this station and to others as well, the information must be saved here, and be transmitted

onto the ring again. These actions are carried out with commands borrowed from the first

two cases, and include some new consderations as well. The function "oppk_nnfd_get()"

88

is used to retrieve data from specified fields in the packet. That is, it is a decapsulation

function. When the data happens to be in a structure format, the function has the effect of

destroying the information. This is an important point because the information must be

preserved for retransmission. Therefore the function:

op-pknfd._get (pkptr, *info", &datapkptr);

(Appendix E, line 719)

must be followed at some point with the statement:

info ptr - op-pk-copy (data-pkptr);

(Appendix E, line 727)

in which i nfo-ptr has been declared in the Temporary Variables to have the same type as

the structure in the " n f o" field. When this information is summoned for re-encapsulation

with the function:

op-pk-nfd-set (pkptr, "info', Info-ptr);

(Appendix E, line 747)

the field information has been preserved. The other fields, "src_addr", "dest-addr", and

"pprl", do not require this procedure, since they are not lost with decapsulation. Two

packets result: one is an ICI frame carrying the received information to the sink process, and

the other is a re-encapsulated packet sent to the LAN. The station's last action before

89

re-encapsulating the destination address array is to zero its corresponding address element.

The last station to receive the packet will destroy it, upon determining that only zeros remain

in the destination address array (Appendix E, lines 644 and 692).

6. Limitation

The primay linitation of the model with multicastig active is in the generation

of throughput and delay statistics. As the code currently stands, each packet is counted by

every station that receives it, leading to multiplication of throughput data. On the other hand,

some use may possibly be made of this characteristic by comparing the tallied throughput

against the actual offered load, as a measure of the effectiveness of the multicasting scheme.

For example, a measured throughput of 100 Mbps versus a known offered load of 50 Mbps

could indicate that multicasting effectively generates SO Mbps without physically taxing the

bandwidth capability of the FDDI LAN, since no additional packets are generated.

90

IV. MODEL TESTING

This chapter provides several test results intended to verify the enhanced capabilities

added to the basic FDDI station model in OPNEr. In addition to improving the

performance and display features, the modifications must preserve the basic behavior to be

useful. The tests presented here include an illustration of the model's treatment of

synchronous and priority-based asynchronous traffic, a simple demonstration that the

modified sink prooess does indeed store the traffic it receives, a check against theoretical

performance equations, and a demonstation on the monitoring of multicast.

Not all of the modifications described in this thesis are incorporated simultaneously

in all station models. The State Transition Diagram correction to the original fd d4 s i n k

process model is of course installed in all models that use the Il c-s 1 n k node. Likewise,

the patch for OPBUG is installed for all MAC model versions. The generation of

randomly differing priority asignmns for all packets is closely interrelated to the

generation of output statistics segregated by class and priority; both involve extensive

modifications to the original process models for the source, sink and MAC, which are

stored as fddigen, fddlmac, and fdd1_slnk. (The actual file names found in the

UNIX subdirectory have the suffix ".pr.m.- and when these are compiled,

corresponding files with the suffix ".pr.c" are created.) The original models of those

names are retired under the ending "_orIg.pr.m." Likewise, the original node-level

station is stored under the name fddi.sta_orig, while fddcistation is the upgraded

91

version. The multicasting capability is stored in a separate station model, fdd i_sta.mul t,

whichincludes the processes fddlmac_mult, fddtgenmul t, and fddt_sinkmult, and

contains all of the other modifications as well. The multicast capability was the last feature

installed for this thesis, and has not been completely developed.

A. SYNCHRONOUS THROUGHPUT

1. Overview

This test was motivated by an earlier study, in which a software simulation tool

was used to demonstrate the effect of increasing offered load on the asynchronous and

synchronous throughput of an FDDI LAN. Using the Block Oriented Network Simulator

(BONeSO), Tari et. al. were able to show that synchronous throughput does not degrade

appreciably, even when the offered load is well in excess of 100 Mbps. They were able

further to show the decay in throughput suffered in the asyncwonous prionty levels as offered

load is increased. Figure 26 is taken from this study. In addition to providing an idea of

expected performance, this figure also highlights the fact that in its original form, OPNET's

FDA model provides no method to display any throughput data other than the overall

performance parameters, total throughput, total mean delay, and total end-to-end delay.

2. Setup

The set up was intended to imitate the older experiment as closely as possible.

Ten simulations were conducted using the same 50-station LAN. Ten stations (f0. f 5,

f1O, f1S. f20. f25. f30, f35. f40, f45) were designated "constant" generators.

92

-"eot "ge~iaw3h k~ f"If"CWGNOO

so..

C -

SO.-"

W..-

S.... 1i. U.* ;4 U& s

Figure 26. Throughput Measurements Using BONeS (Tani, et. al., 1988, p. 58)

93

That is, they were modified inside the source process "C" code to generate packets at a

constant rate, rather than at an exponentially distributed approximation of the rate specified

in the Environment file. These ten stations transmitted synchronous traffic only, while the

other 40 stations were allocated no synchronous bandwidth, sending asynchronous traffic

only. The synchronous stations generated 512-bit packets at a constant arrival rate of 6000

packets per second. The asynchronous stations transmitted 1000-bit packets, at a rate

stepped so as to increase the total offered load by 10 Mbps in each simulation. Thereore,

total offered load ranged from 40.72 Mbps to 140.72 Mbps over ten tests, with steady state

data recorded in a data file of scalar data. TTRT was set to 10.7 ms, in order to support the

delay of 50 stations on a 50 km ring while maintaining ESA, a 10 ls. This differed from the

older study, for which a TTRT value of 8.0 ms was used, despite the authors' stated intention

to model voice network traffic. As noted by Powers (1993, p.340), synchronous voice

transmission requires that the token visit each voice transmitter every 20 milliseconds,

resulting in £SA, = 10 ms. This in turn requires TTRT to exceed 10 ms by an amount

sufficient to account for physical delays inherent to the ring fiber and the stations.

Asynchronous priority threshold levels. T-Pri [1(1, in the NIT state of the MAC process

code were set in incrments of 0.125 TTRT, so that Priority 1 traffic transmission was cut off

when THT incremented to 1.3375 ms, and Priority 8 traffic could be sent for the entire THT

period. Recall that this incrementing THT is a function of OPNET, reversed from the

decrementing timer described in most literature.

94

3. Results

Figure 27 shows a plot of total throughput over a series of ten simulations in

OPNET, demonstrautig a roughly linear rise until the offered load begins to exceed 90 Mbps,

which is in qualitative agreement with the older experiment, and agrees with results published

by Dykeman and Bux (1988, pp. 1003-1007). This plot also serves to show off one of the

model's improvements in data display, allowing "Offered Load" to be an abscissa for scalar

plots.

Figure 28 illustrates the fact that synchronous bandwidth allocation is not affected

by the asynchronct:' offered load; therefore, synchronous throughput remains nearly constant

as the offered load is increased.

Figures 29-31 illustrate the effect of increasing offered load on the throughputs

of asynchronous traffic at priority levels two, three, and four, respectively. No priority

settings above four suffered any degradation within the range of offered load observed in this

test. The decay of Priority 3 traffic at approximately 100 Mbps of offered load suggests that

(3/a)TTRT may be a guiding point for setting priority thresholds that will take effect before

the LAN's capacity is reached.

B. PRELIMINARY LINKING MODEL

1. Overview

The modifications made to the sink process as a step toward a bridging node are

the simplest of all described in this thesis, and the testing of the finished model is also simple.

95

Fnigr 27. Toa Thoghu vs Toa Offre Loa

.. - --- ---

...

* Ii uaIad•me

U U N U U in SM Sa S." S

Figure 27. Total Throughput vs. Total Offered Load

am, s,, . u9,
aI

* 5

S I b ,, = 9 , S.• . I
a a a

Figure 28. Synchronous Throughput vs. Total Offered Load

96

I44 l e). in4lal • iS 4

s -i

I Ii

__ _I__ _ _ __ _ _ _ _ _ 4 ____i _

i i i

1 ' .

* .1 - ..-..4.-... I

ll~~ • Im . Im s I I I i i
I

S I '

i , aM i a M U

SI l I !I

, ..---- . : 1 i ~1'

! :

I3 6 4

4 9 Il l I 4

Figur 30. Priority Three Thr'oughput vs. Total Offere:l Load

97

U t Ose~. kWAA 4 *mlQ*M2

I I

is me as it in 3

1 ti'
' I

* J I

,2 r 1 ~

Total B mi 0)

Figure 31. Priority Four Throughput vs. Total Offered Load

98

It is necessary only to show that all the traffic transmitted to the station is received and held.

To demonstrate this action, a ten-station LAN was created, with station f9 designated the

link node. The Environment file assignments were made so that all stations directed all traffic

to station f 9, which itself was not transmitting. A modest offered load was used to prevent

an overload of packets in the simulation host computer's memory. All transmitting stations

were assigned the same full range of asynchronous priority settings, and were assigned equal

portions of synchronous bandwidth. Each of the buffers at station f9 should have then been

seen to receive packets pre-sorted for eventual transmission. The Probe Editor was used to

monitor "p ks i ze." the number of packets in each subqueue of the modified sink process

model.

2. Setup

The following calculations and Environment file settings in Table 1 were chosen

as reasonable:

Table 1. ENVIRONMENTAL FILE SETTINGS.

packet size: 2000 bits
arrival rate: 10 pkt./sec.
offered load: 9 - 10 0 2000 = 180,000 bps.
TTRT (TReq): 0.004 sec.
async nix: 0.9
prop delay: 5.085 x 10"o sec./km. x kin.) = 5.085 x' s...
station latency: 60.0 x 10- sec.
D_Max: (5.085 /4sec. • 10) + (60.0 xl0' • 10) = 0.05685 ms.
FMax: 0.360 ms.
Token Time: 0.00088 Ms.
synchronous BW: 4-(0.05685 + 0.360 + 0.00088) = 4 - 0.41773 = 3.58227 ms.

99

Dividing bandwidth evenly among 9 stations gives the following:

3.58227 M.. . 0.39803 ms./station. (2).
9 atavlons

This result is compared with TTRT to determine the "sync bandwidth" attribute

0.39803 ns. . 0.0995075 ms. (3).
4.0 1s.

which is a unitless fraction of TTRT.

3. RESULTS

The given parameters were applied, and the receiving buffers were inspected at

the end of one second of simulation time. Figure 32 is the plot obtained illustrating the

accumulation of packets in all nine subqueues. (Although all the plots may be placed in one

panel, the data are divided into two panels for readability of the hardcopy). The plots show

the following after one second:

Table 2. SUBQUEUE ACCUMULATION

subqueue(0): 13 packets
subqueue(O): 11 packets
subqueue(2): 10 packets
subqueue(3): 7 packets
subqueue(4): 7 packets
subqueue(5): 12 packets
subqueue(6): 11 packets
subqueue(7): 10 packets
subqueue(8): 9 packets----q------------------

total: 90 packets

This agrees with the given packet generation rate of 90 packets/sec., and verifies that the

preliminary linking model holds all received packets on station.

100

NOSSb. 99. 14-0011iZ1.ub0""

a CW. to LU1s..s -VI SA"
A MO. ". L3.jBI'I *@sAM

is

12.6

7.5

0 1.5

U" (S")

110

C. SYNCHRONOUS TIMING

1. Overview

In order to preserve the real-time nature of synchronous traffic, the bandwidth

allocated to a given station may not be exceeded. Although transmission time (bandwidth)

may remam to a stion, the protocol detmines a priori whether the next pack tramsmission

would cause the allotted bandwidth to be exceeded. If the bandwidth limit would be

exceeded, then the station will not transmit. The code in the TXDATA state of the MAC

process ensures OPNET's FDDI LAN models adhere to this behavior, as shown in the

following simple experiment.

2. Setup

A new LAN was reated, using 13 stations on 91 Inm. of fiber, resulting in seven

kilometers of fiber between stations. The odd figures were chosen in order to avoid

symmetries in the arithmetic involved, thereby enhancing the instructional value of the test.

All 13 stations were assigned an equal portion of the total available bandwidth for

synchronous traffic, and all stations transmitted only synchronous traffic. Physical attributes

were identical for each station. The following calculations apply:

102

Table 3. 13-STATION LAN ENVIRONMENT SETTINGS.

propdelay: 7 km. * 5.085 x 10io sec./km. = 0.0355950 ms.
station latency: 60.0 x 10' sec./station
FMax: 0.360 ms.
D_Max: (13 stations • 60.0 x 10" sec./station) + (13 links•

0.035595 ms.ilink) = 0.4627428 ms.
TokenTime: 0.88 Aisec.

D Max + FMax + TokenTime = 0.8236228 ms.
TTRT: 4.0 ms.

TTRT > ZSA1 + 0.8236228 - YSA, s 3.1763772 ms.

Divide the synchronous allotment evenly among 13 stations:

3.1763772 ms./ 13 stations = 0.2443367 ms./station.

Given the standard transmission rate of 100 Mbps, each station may transmit

24,433 bits with its synchronous allotment. This bandwidth is converted to a fraction for the

Environment file attribute "sync bandwidth":

0.2443367 ms. - 0.06103413 (4).

4.0 ms.

For this test, all stations were constant transmitters. That is, the code for the

source process was adjusted so that packet transmission rates and packet lengths were

assigned invariant values, rather than stochastic approximations of the attributes assigned.

A TTRT of 4 ms indicates 250 token passes per second, which was chosen as the packet

arrival rate for all stations. Packet size was 24,000 bits, resulting in a total offered load of

78.0 Mbps. A larger packet size, for example 25,000 bits, should be too large to transmit,

resulting in no throughput at all.

103

3. bResuls

Figure 33 shows the resulting total throughput derived from the given setup.

Invoking the "convert to text" attribute of the on-screen men indicates a value of 77.7

Mbp after one second, with a slow rise still in progress. This is in close agreement with the

offered load.

Figure 34 is an empty panel, accompanied by a text screen indicating that no

throughput results when the packet size exceeds that allowed by the synchronw,- bandwidth

assignment. In this case, packet size was increased to 25,000 bits. Arriva, was also

reduced to 100 packets/sec., resulting in a total offered load of 32.5 Mbps. Figure 35

illustrates the accompanying accumulation of packets in station f 3's subqueue(8), which is

reserved for synchronous traffic. The perfectly linear shape is a result of the constant arrival

rate assignment.

D. ASYNCHRONOUS EFFICIENCY

1. Overview

A network's throughput efficiency is calculated from the following equations,

which assume that only asynchronous traffic is being transmitted:

104

SN(-,) (5)
(TN+D)

where:

N- number of stations,

T= TIRT and,

D = ring latency (total time required for a token to circulate the ring in the

absence of data traffic).

Ring latency D is in turn defined as

D - L.! + N-T(6).

where:

L = length of ring in kilometers

"/= 5.085 x 10, sec./m.

T, = token processing time (0.88O s.)

(Powers, 1993, pp. 336-337; uses T, = 1.0/us. as a typical value)

The same 13 station, 91 kam LAN described previously was used here, with the Environment

file adjusted so that no synchronous bandwidth was assigned, and only asynchronous traffic

was generated. Offered load was 78.0 Mbps. The given equations indicate the expected

efficiency is 87.44%.

105

S lI ImBl,•

ii
I I

-te-

Figure 33. Synchronous Throughput: B c Packet T ransission TimeE

I 10 .

15 I.t 4

: f

i i
* L6 65 I I 61

Figure 34. Synchronous Throughput: B xed Packet Transmission TimuEcedsB

106

2. Results

Figure 36 illustrates the resulting throughput, 68.48 Mbps, which is 87.79% of

the offered load. This agrees quite well with the predicted throughput.

E. MULTICASTING

1. Ovemew

The multicasting fimtion i desied to amn to each packet a randomly chosen

number of destination addresses, then to use this selected number as an index for a loop in

which a different destination address is assigned on each iteration. Upon completion of the

loop, a vector array of ones and zeros has been created, in which a one in position i indicates

the packet is addressed to station f,. Of course, a real transmitter would send many

consecutive packets to the same set of addresses, in streams that comprise messages.

However, this modification is in keeping with the original model's actions, which randomly

assigned destinations on a packet-by-packet basis.

Preliminary tests indicated the model is not fully developed. Because no change

was made to the statistics generation mechanism in the sink process model, the new model

as written should have resulted in packets being counted toward total throughput each time

they were received at a destination, giving an inflated throughput computation. On the other

hand, this inflated figure could possibly be of value as a measure of "virtual throughput." In

any event, tests indicate that throughput statistics are not being counted correctly. However,

a study of the model's behavior using the debug tool in conjunction with "p r I ntf" statements

107

F~U igure 35 cumlt ychoosPcesi A

%.a*eo" " a-

10.5 4 . 4 .9 S 6. .

Figure 36. Asynchronous Throughput

108

indicated that no packets were being lost, and all stations seemed to carry out correctly the

operion of receiving a multicast packet, saving the information, and passing the packet on

to the next station.

Three tests are described here. The first is an attempt to reproduce the results

generated for one of the simulations used in Section A, then uses the same input parameters

to see if any differences exist in the handling of synchronous-only and asynchronous-only

traffic. The second test compares all synchronous throughput with all asynchronous

throughnut. The third test is a verification that no packets are actually being lost. The fourth

tes is an attempt to generate a plot of expected throughput when one station broadcasts all

its traffic.

The tests generally indicate that the multicast capable model, when limited to

single addressing, does not behave in the same manner as the single-address-only model. In

particular, throughput is lower than expected. Further development will be necessary to make

the multicasting model a reliable tool.

2. First Test

a. Sauap

Figure 37 displays the throughput plots resulting from the third run in the

set of simulations used to construct Figure 27. This test is based on the idea that if the

multicast-capable model is limited to single addressing, and given the same input parameters

provided in the earlier test, then the resulting throughput ought to be identical for total

asynchronous and synchronous traffic. Therefore, the following inputs were used for a 50

station, 50 Ikn. LAN using the multicasting station model.

109

Tmnstations(fO. f5. flo0 f1s. f20. f25. f30, f35, f40. f45)

transmit only synchronous traffic in 512-bit packets with a constant arrival rate of 6000

packets/sec, resulting in a synchronous offered load of 30.72 Mbps. The remaining 40

stations transmit asynchronous traffic only, in 1000-bit packets at an arrival rate of 750

packets/sec, for an asynchronous offered load of 30 Mbps. TTRT is set to 10.7 ins. For all

stations, the Environment fle attributes "min nun addees" and "max num addees" are

both set to 1, enforcing the limit of one destination address per packet. Appendix H *ws

the Environment file used here.

b. Result

Figure 38 illustrates the resulting throughput. Table I summarizes the

throughput results for the two simulations. The unpredictable throughput of the multicast-

capable model's synchronous and asynchronous modes would suggest some logic error in

coding. The reduction in overall throughput suggests perhaps some difficulty with the

simulation's timing mechanism.

Table 4. THROUGHPUT COMPARISON, FIRST TEST

Offered Load Single Address Mulficast
Cpble C de

Total 60.72 Mbps 60.60 Mbps 55.00 Mbps

Synchronous 30.72 Mbps 30.80 Mbps 43.00 Mbps

Asynchronous 30.00 Mbps 30.00 Mbps 12.00 Mbps

A real FDDI station would not generate destination addresses in the manner

coded into the simulation model; the time required would be unreasonable. On the

110

* W.61 aw"& Ow) 03-0)
0 OW Obmewsa "ae) 41".40)

rii

4 +

Figur 37. Throughputs: Single Addressing Only Stations

1 1

" - lm" as2 ad-04 .
X-0-

* . . •w0

I &Aa 4a

i Capabl S o i A n d

* i

*I n II 6 II 0n4 06

Figure 38. Throughput: Multicas Capable Stations, Single Addressing Mode

111

other hand, although the simulation's execution is noticeably slowed by the extra events

generated in the destination address assignment loop, the throughput rate should not be

affected because the simulated passage of time is controlled by the Kernel Procedures. That

is, one microsecond does not pass until the simulation has completed one microsecond's

worth of events, at all points on the LAN. This is how simultanous events around the LAN

are conducted, one at a time. For example, a new packet arrival at station f7, and a packet

destruction at station f23, and a token release at station f0 may all occur simultaneously. A

study of the sequence of events, revealed through use of the debug facility, shows that the

simulation's clock is incremented after these events are all completed, thereby modeling

simultaneous events. The eight percent reduction in total throughput may indicate the

simulation timer is proceeding without waiting for the completion of the loop.

3. Second test

a Setup

This test was immded to compare the throughput resulting from two nearly

identical simulations, in which the first involved only synchronous traffic, and the second

involved only asynchronous traffic A ten-station LAN was created, with all stations having

the same packet arrival rate (750 packets/sec) and packet size (1000 bits). As in the previous

test, destination addresses were limited to one station per packet. TTRT was set to 4.0 ms.

b. Results

Figure 39 and Figure 40 illustrate the throughputs resulting from 7.5 Mbps

offered load of all-synchronous and all-asynchronous traffic, respectively. Interestingly, both

plots are identical, suggesting perhaps that the disparate results of the previous test indicate

112

$u *"OP Ol,) fuse-MS

'.6

4.5i

ass 9. .sI3s2is Ut

a"-~ Ua-fa0" O*

414

. 1.,75

*.1 I. *I-I. I.S] I
tIM (a..)

Figure 39. Synchronous Throughput

_1 13 I

"I . -

4.1

S S 5. 07 1 . 7

Figure 40. Asynchronous Throughput

113

a coding error whenever mixed loads of synchronous and asynchronous traffic must be

tracked simultaneously. Also noteworthy is the fact that the resulting throughput in both

cases, 6.86 Mbps, was 91.5% of the offered load. This is comparable with the previous test:

the 55 Mbps throughput in Figure 38 represents 91.7%/6 of the 60.72 Mbps offered load.

Again, this suggests a coordination problem between the addressing loop and the simulation's

tLnekeeping function.

4. Third Test

a Setup

This test was intended to compare the throughput from two different

perspectives available. One result was generated in the familiar accounting procedure

conducted in the sink process model, and the other result used the Probe Editor to place a

monitoring probe on one of the station transmitter ncdes, phytx. If the transmissions are

arranged so that all traffic passes this node, then the result should be two identical

throughputs.

The same LAN often multicast-capable stations was used, with only station

f9 transmitting, and with all of its traffic directed to station f 8. In between, a probe was

placed on the transmitter node of station f 7. The packet arrival rate was 7500 packets/sec.,

and the packet length was 1000 bits, giving an offered load of 7.5 Mbps, all of which was

asynchronous, with the full range of prioritization available. TTRT was 4.0 ms.

b. Results

Figure 41 shows a roughly constant difference of approximately 0.15 Mbps

between the throughput monitored from the physical transmitter and that calculated in the

114

receiving station's sink process. The irregular plots are unusual, since the simulations

normally show a smooth steady state after less than half a second. Significantly, both curves

remain close to the offered load, though they are jagged.

The 40 bits per packet overhead (created in the Parameter Editor, where

the fields "fc", "src-addr." and "destaddr" are assigned sizes of 8, 16 and 16 bits,

respectively) is a possible source of disparity, although a difference of 0.3 Mbps would be

expected in that case (7500 x 40). A study of the sink process model shows that overhead

is not included in throughput calculations, while the probes do count the bits in the

encapsulating packet structure. As before, the problem requires more study.

S. Fourth Test

a. Setup

A final test of the expected throughput of the multicast-capable model

actually observed the multicasting facility, or more exactly, the broadcasting facility of the

model. Again, a ten station LAN was used, with only one station transmitting, with TTRT

set to 4.0. This transmitter, station f 7, generated 7500 packets at 1000 bits per packet, for

a total offered load of 7.5 Mbps, all asynchronous. In addition, each packet was addressed

to all nine of the other stations, which would be expected to yield a throughput of 67.5 MWps.

(The throughput statistics are gathered by comparing timestamps at the receipt of a packet

with the packet's creation time, which is carried as a field in the fdd i_11 c-f r packet format).

115

b,. Re/lt

Figure 42 iustrates the actual result. The probe at station f 7's "phy-tx"

node reflects the offered load of 7.5 Mbps with reasonable accuracy. However, the expected

throughput of 67.5 Mbps was not nearly realized. The throughput plotted, 48.9 Mbps,

represents 72.44% of the predicted amount. Again, this indicates a need to further develop

the model, and to better define the meanings of througlput and offered load when packets are

addressed to more than one station at a time.

116

IS

SAW (069)

Figure 41. Throughput from Two Vantage Points

* 3 a .uSIk.m k'

4117

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has been directed to two main purposes: to explain the use and operation

of OPNET's FDDI LAN simulation, and to describe the changes that were installed in the

model in order to make it a more useful, accurate and versatile tool for the Common Data

Link project. Both goals share another common objective, which is to develop and document

the "corporate knowledge" of the CDL working group which will continue to work with the

model studied here.

One immediate conclusion is the observation that OPNET is a powerful and flexible

tool, but it requires much time and study to be used effectively. Where desired model

attributes are lacking, the patient user may code his or her own. The following are the

accomplishments documented with this thesis:

1. Throughput, mean delay, and end-to-end delay data are recorded separately and

may be displayed separately for synchronous packet traffc and each priority level

of asynchronous packet trafic. In addition, two new scalar plot axes,

"Asynchronous Offered Load" and "Total Offered Load" are available for the

display of LAN performance data in relation to usage.

2. The FDDI station model is capable of randomly choosing different priority

threshold settings to assign to generated asynchronous packets, where before the

118

model was bound to one setting per simulation. This modification allows an

additional measure of flexibility in assigning the transmission characteristics of

an FDDI LAN.

3. A rudimentary linking node has been created, which accumulates received traffic

in buffers for eventual transmission to another LAN.

4. A multicasting capability has been added to the FDDI station model, enabling

packets to be addressed to more than one destination station. Preliminary tests

and studies indicate the model correctly generates, transmits, receives, and

disposes of the multicast packets, although unexpected throughput data suggest

the model possibly has coding inaccuracies or improper interfacing of simulation

timing and destination address generation.

5. A modest series of preliminary tests verifies the confinuing valid operation of the

modified models, for the most part.

6. A significant nmWe of unexpected features of OPNETs FDDI LAN model are

documented, for the benefit of those researchers continuing to work on the CDL

proje.

B. RECOMMENDATIONS

Because the eventual goal of the work begun in this thesis is the development of a large

scale model simulation for a Network Interface, the development of the FDDI LAN model

may be expected to continue. The following are some possible areas for further development:

119

As mentioned, the nlticasting feature. yields low thoughput. The

complex nature of the chsages made to the code to enable nulticasting suggests

the likelihood of some logic rror or timing interface discrepancy. This ought to

be found and corrected.

2. The testing presented in this thesis is only preliminary, and could well be

expanded upon. Because of time constraints, delay characteristics were not

addressed at all.

3. The buffered subquwes of the preliminary bridging model are infinite by default,

but may be assigned limits through the use of on-screen attributes. The code

currently has no provision for the proper disposal of packets lost to buffer

overflows, lost frames will fill the host terminal's memory until none remains. A

related but separate issue is the fact that there is no retransmison protocol in

effect for the current model.

120

APPENDIX A. FILE RETRIEVAL VIA FTP

The following is an excerpt from a screen dialogue demonstrating access to MIL 3

Inc.'s bulletin board, movement among subdirectories, and retrieval of files.

sun24:/home3/nlx
% ftp
ftp> open
(to) mil3.com
Connected to mil3.com.
220 rmaxwell FTP server (SunOS 4.1) ready.
Name (mil3.com:nix): anonymous
331 Guest login ok. send ident as password.
Password: nix@ece.nps.navy.mll
230 Guest login ok. access restrictions apply.
ftp> dir
200 PORT command successful.
150 ASCII data connection for /bin/Is (131.120.20.124,2926) (0 bytes).
total 18
-rw-r--r-- 1 0 100 2110 Jul 21 00:32 FTP.instructions
-r--r--r-- 1 0 1 5135 Jan 21 1992 README.OPSIG
dr-xr-xr-x 2 0 1 512 Jan 14 1992 bin
dr-xr-xr-x 2 0 1 512 Jan 14 1992 dev
dr-xr-xr-x 2 0 1 512 Jan 14 1992 etc
drwxr-xr-x 5 0 1 512 Oct 27 1992 examp
drwx--x--x 2 0 1 512 Dec 20 16:40 incoming
dr-xr-xr-x 10 0 1 512 Dec 23 17:34 model-depot
drwxr-xr-x 10 0 1 512 Dec 15 10:09 patches
drwxrwxrwx 3 0 1 512 Dec 29 03:05 tmp
dr-xr-xr-x 3 0 1 512 Jan 14 1992 usr
226 ASCII Transfer complete.
700 bytes received in 3.1 seconds (0.22 Kbytes/s)
ftp> get README.OPSIG
200 PORT command successful.
150 ASCII data connection for README.OPSIG (131.120.20.124.2927) (5135

bytes).
226 ASCII Transfer complete.
local: README.OPSIG remote: README.OPSIG
5257 bytes received in 6.8 seconds (0.75 Kbytes/s)
ftp> cd patches
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 ASCII data connection for /bin/ls (131.120.20.124,2928) (0 bytes).
total 8

121

drwxr-xr-x 6 101 1 512 Mar 10 1993 2.3.L
drwxr-xr-x 4 101 100 512 Apr 2 1993 2.3.Lhp
drwxr-xr-x 6 101 1 512 Sep 24 22:42 2.3.M
drwxr-xr-x 4 101 1 512 Dec 6 18:37 2.4.A
drwxr-xr-x 5 101 1 512 Dec 17 22:32 2.4.B
drwxr-xr-x 4 101 1 512 Jan 29 1993 2.4.beta2
drwxr-xr-x 13 101 1 512 Apr 26 1993 2.4.beta3
drwxr-xr-x 5 101 1 512 Jun 10 1993 2.4.beta4
226 ASCII Transfer complete.
511 bytes received in 0.63 seconds (0.8 Kbytes/s)
250 CWD command successful.
ftp> cd 2.4.B
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 ASCII data connection for /bin/ls (131.120.20.124,2934) (0 bytes).
total 3
drwxr-xr-x 2 101 100 512 Dec 15 10:11 opbug_2081
drwxr-xr-x 2 0 1 512 Dec 17 22:33 tsup_3139
drwxr-xr-x 2 0 1 512 Dec 17 20:15 tsup_3182
226 ASCII Transfer complete.
205 bytes received in 0.28 seconds (0.7 Kbytes/s)
ftp> cd opbug_2081
250 CWD command successful.
ftp> dir
200 PORT command successful.
150 ASCII data connection for /bin/ls (131.120.20.124.2935) (0 bytes).
total 57
-rw-r--r-- 1 101 100 3988 Dec 15 07:12 README
-rw-r--r-- 1 101 100 53379 Dec 15 07:12 fddlmac.pr.m
226 ASCII Transfer complete.
141 bytes received in 0.22 seconds (0.62 Kbytes/s)
ftp> get README
200 PORT command successful.
150 ASCII data connection for README (131.120.20.124.2936) (3988

bytes).
226 ASCII Transfer complete.
local: README remote: README
4092 bytes received in 5 seconds (0.81 Kbytes/s)
ftp> bin
200 Type set to I.
ftp> get fddimac.pr.m
200 PORT command successful.
150 ASCII data connection for fddimac.pr.m (131.120.20.124,2937)

"(53379 bytes).
226 ASCII Transfer complete.
local: fddimac.pr.m remote: fddi.mac.pr.m
53388 bytes received in 64 seconds (0.81 Kbytes/s)
ftp> quit

122

APPENDIX B. PACKET AND ICI FRAME

STRUCTURES

The foliowing packet strucures are used in the FDDI LAN model.

A. PACKET FORMATS

1. "fddi lkfr"

Field Name Type Size (bits) Default Value Default Set
- - - - - - - - - - . . . o1° o1 - - -.-- - - -

cr-time double 0 0.0 set
priNote integer 0 0 unset

Note: Added to allow generation of statistics related to prioritized traffic

2. "fddimacjfr"

Field Name Type Size (bits) Default Value Default Set

fc integer 8 unset
srcaddr integer 16 unset
destaddr integer 16 unset
info packet -1 unset
svcclass integer 0 unset
pri integer 0 unset
tkclass integer 0 unset

3. "fddLmac.tk"

Field Name Type Size (bits) Default Value Default Set

fc integer 8 unset
class integer 0 unset
resstation integer 0 unset

123

B. ICI FORMATS

1. "fddiLmac iod"

Attribute Name Type Default

src-addr Integer 0
dest-addr Integer 0

2. "fddLumacqreq"

Attribute Name Type Default

svc-cl ass integer 0
dest-addr integer 0
pri integer 0
tkclass Integer 0

124

APPENDIX C. EXAMPLE ENVIRONMENT FILE

FOR 32-STATION FDDI LAN

fdd132.ef
sample simulation configuration file for fddi eAample model
32 station network

#*** Attributes related to loading used by "fddigen" ***

station addresses
* *.fO.mac.stationaddress: 0
* *.fi.mac.station-address: 1
* *.f2.mac.station-address: 2
* *.f3.mac.station-address: 3
* *.f4.mac.station-address: 4
* *.fS.mac.station-address: 5
* *.f6.mac.station-address: 6
* * f7.mac.station-address: 7
* * f8.mac.station-address: 8
* * f9.mac.stationaddress: 9
* * flO.mac.station_address: 10
* * f1l.mac.stationaddress: 11
* * f12.mac.station-address: 12
* * f13.mac.station_address: 13
* * f14.mac.station_address: 14
* *.fiS.mac.station-address: 15
* *.f16.mac.station_address: 16
* *.f17.mac.station-address: 17
* *.fIB.mac.station_address: 18
* *.fl.mac.station-address: 19
* *.f20.mac.station-address: 20
* *.f21.mac.stationaddress: 21
* *.f22.mac.station-address: 22
..f23.mac.stationaddress: 23
..f24.mac.stationaddress: 24
..f25.mac.stationaddress: 25
..f26.mac.stationaddress: 26
..f27.mac.stationaddress: 27
..f28.mac.stationaddress: 28
..f29.mac.stationaddress: 29
..f30.mac.stationaddress: 30
* *.f31.mac.station-address: 31

125

..*.mac.ring id :0

destination addresses for random message generation
"**llc-src.low dest address' 0
"*.*.llcsrc.high dest address' : 31

#*top.rlngO.fO.llc_src.low dest address' :
#'top.ringO.fO.llc-src.high dest address' :

arrival rate(frames/sec), and message size (bits) for random message
generation at each station on the ring.
"*.*.*.arrival rate' : 200
"*.*.*.mean pk length" : 500

set the proportion of asynchronous traffic
a value of 1.0 indicates all asynchronous traffic
"*.*.*.async_mix" : 1.0

#*** Ring configuration attributes used by "fddimac" *

allocate percentage of synchronous bandwidth to each station
this value should not exceed 1 for all stations combined: OPNET does
not
enforce this; 01FEB94: this must be less than 1: see equation below

"*.*.mac.sync bandwidth' : 0.0

"*.fO.mac.sync bandwidth* : .0935487

"*.*.mac.T-Req" : .010

Index of the station which initially launches the token
"spawn station': 0

Delay incurred by packets as they traverse a station's ring interface
see Powers, p. 351 for a discussion of this (Powers gives lusec.
but 60.Oe-08 agrees with Dykeman & Bux)
station_latency: 60.0e-08

Propagation Delay separating stations on the ring.
propdelay: 5.085e-06

#*** Simulation related attributes

Token Acceleration Mechanism enabling flag.
It is reccomended that this mechanism be enabled for most situations
acceleratetoken: 1
seed: 10

Run control attributes
duration: 5

126

verbose_sim: TRUE
updInt: .1
os_fjile: fdd132mod

ov_flle: fdd132mod
Opnet Debugger (odb) enabling attribute
debug: TRUE

127

APPENDIX D. DEBUG TOOL EXCERPT

The following is an excerpt from the debugger in fudltrace, showing the arrival and

reception of a message traffic packet at its destination address. In this case, station f 11

has sent a packet to station f3 1. The packet has been passed "hand to hand" through each

station in between, with the simulator enacting every step along the way. Note that when

reception is complete, the simulation returns to station f 1i, which still has the token.

(ODB 2.4.A: Event)

* Time : 0.995744186808 sec. [OOd OOh OOm OOs . 995ms 744us

186ns 808ps]
* Event : execution ID (461704), schedule ID (#502933), type

(self intrpt)
* Source : execution ID (461703). top.ringO.f30.phy.tx (pt-pt

transmitter)
* Data code (0)

> Module top.ringO.f30.phytx (pt-pt transmitter)
odb> next

* Kernel Action: Pt-Pt Transmitter object
Completing transmission of packet(s)
channel (0)
packet ID (4459)

(ODB 2.4.A: Event)

"* Time : 0.995744186808 sec. [OOd OOh 00m 0Os . 995ms 744us

186ns 80Bps]
"* Event : execution ID (461705). schedule ID (#502934), type

(remote intrpt)
"* Source : execution ID (461703), top.ringO.f30.phytx (pt-pt

transmitter)
"* Data : code (0)
> Module : top.ringO.f31.phyrx (pt-pt receiver)

odb> next

* Kernel Action: Pt-Pt Receiver object
Beginning reception of packet
channel (0)

128

packet ID (4459)

(ODB 2.4.A: Event)

*Time : 0.995744186808 sec. [Od OOh 00m OOs . 995ms 744us 186ns
808ps]

* Event : execution ID (461706). schedule ID (#502935). type
(remote intrpt)
* Source : execution ID (461703), top.ringO.f30.phy-tx (pt-pt

transmitter)
* Data : code (0)
> Module : top.ringO.f31.phyrx (pt-pt receiver)

odb> next

"* Kernel Action: Pt-Pt Receiver object

Completing reception of packet
channel (0)
packet ID (4459)

"* Kernel Action: Pt-Pt pipeline

Calling (error) pipeline stage
packet ID (4459)

"* optd-get-int (pkptr. tdalndex)
packet ID (4459)
TDA attribute' (OPC_TDA_PTLINKOBJID)
TDA value (82)

"* opimaobjattrget (objid. attr-name, value-ptr)
objid (82)
attr.name (ber)
value (0.0)

"* op-pk-totalsize.get (pkptr)
packet ID (4459)
total size (25040)

"* optd-setint (pkptr, tda_index, value)

packet ID (4459)
TDA attribute (OPCTDA_PT_NUMERRORS)
TDA value (0 bit errs)

"* Kernel Action: Pt-Pt pipeline
Calling (ecc) pipeline stage
packet ID (4459)

"* optd is-set (pkptr, tdatndex)

packet ID (4459)
TDA attribute (OPC_TDA_PT_NDFAIL)

129

tda Is set (false)

"* optdget-lnt (pkptr. tda-lndex)
packet ID (4459)
TDA attribute (OPC_TDAPTRXOBJID)
TDA value (734)

"* op_imaobj-attrget (objid, attr_name, value-ptr)
objid (734)
attr-name (ecc threshold)
value (0.0)

"* oppk.total-sizeget (pkptr)
packet ID (4459)
total size (25040)

"* optd-get-tnt (pkptr, tdatindex)
packet ID (4459)
TDA attribute (OPCTDA-PT-NUMERRORS)
TDA value (0 bit errs)

"* optdsetmnt (pkptr, tda-tndex. value)
packet ID (4459)
TDA attribute (OPC.TDAPTPK_ACCEPT)
TDA value (1)

"* Kernel Action: Pt-Pt Receiver object
Packet successfully received
channel (0)
packet ID (4459)

(0DB 2.4.A: Event)

* Time 0.995744186808 sec, COOd OOh 0Om OOs 995ms 744us 186ns

808ps]
* Event : execution ID (461707). schedule ID (#502936), type

(stream intrpt)
* Source : execution ID (461706). top.ringO.f31.phy-rx (pt-pt

receiver)
* Data : instrm (0). packet ID (4459)

> Module : top.ringO.f31.mac (queue)

odb> next

"* invoking process ("fddLmac")

state (IDLE): exit executives

"* op.intrpt-type ()

intrpt type (stream intrpt)

130

"* opintrpt-strm ()
active strm (0)

"* op-pk-get (instrmIndex)
strm. index (0)
packet ID (4459)

"* oppknfd-get (pkptr, fd_name, value-ptr)
packet ID (4459)
field name (fc)
value (0)

"* op_intrpt-type ()
intrpt type (stream intrpt)

"* op-intrpt-type ()
intrpt type (stream intrpt)

"* op-intrpt-strm ()
active strm (0)

state (FR_RCV): enter executives

"* oppknfd.get (pkptr, fd-name. value-ptr)
packet ID (4459)
field name (srcaddr)
value (11)

_ state (FRRCV): exit executives

-state (FRREPEAT): enter executives

"* op-pk-nfd-get (pkptr, fd-name. value-ptr)
packet ID (4459)
field name (dest-addr)
value (31)

"* op-pk-total-size-get (pkptr)
packet ID (4459)
total size (25040)

"* op-pk_nfd-get (pkptr. fdname, value-ptr)
packet ID (4459)
field name (info)
value (pk id (4458))

"* op-iciattrset (iciptr, attr-name, attrvalue)
ICI Id (81)
attr name (srcaddr)
value (11)

131

"* opiciattrset (lctptr, attr.name. attr-value)
ICI Id (81)
attr name (dest-addr)
value (31)

"* op-iciinstall (iciptr)
ICI ID (81)

"* op-pk-send-delayed (pkptr. outstrmindex. delay)
packet ID (4458)
stream index (1)
delay (0.0002504)

"* op-pk-destroy (pkptr)
packet ID (4459)

"* Kernel Action: Destroying Packet

packet ID (4459)

state (FRREPEAT): exit executives

state (IDLE): enter executives

"* returning from process (*fddl_mac')

(OOB 2.4.A: Event)

* Time : 0.995886571808 sec. [OOd OOh 00m Os . 995ms 886us 571ns

808ps]
* Event : execution ID (461708), schedule ID (#502837). type

(stream intrpt)
"* Source : execution ID (461607). top.ringO.fll.mac (queue)
"* Data : instrm (0). packet ID (4457)
> Module : top.ringO.fll.phy-tx (pt-pt transmitter)

odb> next

132

APPENDIX E. MAC "C" CODE:

"fddi_macmultpr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET's text editors.

1 /* Process model C form file: fddimacmult.pr.c *I
2 1* Portions of this file Copyright (C) MIL 3. Inc. 1992 */

3 I* OPNET system definitions *I
4 #include <opnet.h)
5 #include "fddimac-mult.pr.h"
6 FSMEXT_DECS

7 /* Header block */
8 /* Define a timer structure used to implement */
9 /* the TRT and THT timers. The primitives defined to */

10 /* operate on these timers can be found in the */
11 /* function block of this process model. */
12 typedef struct
13
14 int enabled;
15 double start-time:
16 double accum;
17 double target_accum:
18) FddiTTimer;

19 /* 08FEB94: define the number of stations here. -Nix */
20 #define NUMSTATIONS 50

21 /* Declare certain primitives dealing with timer.s */
22 double fddi_timerremaining (;
23 FddiTTimer* fdditimercreate (:
24 double fddi_timervalue (;

25 /* Scratch strings for trace statements */
26 char strO [512), strl [512];

27 /* define constants particular to this implementation */
28 #define FDDIMAXSTATIONS 512

133

29 /* define possible values for the frame control field */
30 #define FDDIFCFRAME 0
31 #define FDDIFCTOKEN 1

32 /* define possible service classes for frames */
33 #define FDOISVCASYNC 0
34 #define FDDISVCSYNC 1

35 /* define input stream indices */
36 #define FDDILLCSTRMIN 1
37 #define FOOI-PHYSTRM_IN 0

38 /* define output stream indices */
39 #define FDDILLCSTRMOUT 1
40 #define FDDIPHYSTRM_OUT 0

41 /* define token classes */
42 #define FDDITK.NONRESTRICTED 0
43 #define FDDITKRESTRICTEO 1

44 /* Ring Constants */
45 #define FDDITXRATE 1.0e+08
46 #define FODISASCANTIME 28.0e-08

47 /* Token transmission time: based on 6 symbols plus 16 symbols of
48 preamble */
49 #define FDDICTOKENTXTIME 88.0e-08

50 /* Codes used to differentiate remote interrupts */
51 #define FDDICTRT_EXPIRE 0
52 #define FDDICTKINJECT 1

53 /* Define symbolic expressions used on transition */
54 /* conditions and in executive statements. */
55 #define TRTEXPIRE (oplntrpt-type () - OPC_INTRPT_REMOTE &&
56 op-intrptscode () -- FDDICTRTEXPIRE)

51 #define TKRECEIVED phyarrival && frame_control - FDDI_FC_TOKEN

58 #define RCFRAME phyarrival && framecontrol -- FDDI_FC_FRAME

59 #define FRAME-ARRIVAL
60 op-intrpt-type () - OPCINTRPTSTRM &&
61 opintrpt.strm C) - FDDILLC_STRMIN

62 #define STRIP my-address - srcaddr

63 /* Define the maximum value for ring-id. This is the */
64 /* maximum number of FDOI rings that can exist in a */
65 /* simulation. Note that if this number is changed, */

134

66 /* the initialization for fddiclaim_start below must */
67 /* also be modified accordingly. */
68 #define FODIMAXRINGID 8

69 /* Declare the operative TTRT value 'TOpr' which is the final */
70 /* negotiated value of TTRT. This value is shared by all stations */
71 /* on a ring so that all agree on its value. */
12 double fddt_t_opr [FODI_JAXRINGID]:
13 #define Fddi_TOpr (fddilt_opr [ringtid])

74 /* This flag indicates that the negotiation for the final TTRT */
75 /* has not yet begun. It Is statically initialized here. and */
76 /* is reset by the first station which modifies TOpr. */
77 /* Initialize to 1 for all rings. */
78 nt fddilclaim-start [FDDIMAXRINGID] - (1.1.1.1.1.1.1.1J;
79 #define FddiClaim_Start (fddiclaim_start [ringid])

80 /* Declare station latency parameters. */
81 /* These are true globals. so they do not need to be arrays. */
82 double FddiSt_Latency;
83 double Fddi_PropDelay;

84 /* Declare globals for Token Acceleration Mechanism. */
85 /* Hop delay and token acceleration are true globals. */
86 double FddiTk-HopDelay;
87 mnt FddiTkAccelerate - 1;

88 /* These are actually values shared by all nodes on a ring, *I
89 /* so they must be defined as arrays. */
90 double fddittkblockbase_time (FDDI_MAXRINGID];
91 #define FddiTkBlockBaseTime (fddittkblock_base_time [ring.id])

92 nt 4i..tk-blockbasestation [FDDO_MAX_RINGJIDJ:
93 #define Fddi_Tk_Block_Base_Station (fddi_tk_block_base_station
94 [ring-ld])

95 int fdditkblocked [FDDIMAXRINGID]:
96 #define FddiTk_Blocked (fdditk_blocked [ringidj)

97 int fddi_num_stations [FDDI_MAX_RING_ID]:
98 #define Fddi_NumStations (fddilnumstations [ringid])

99 int fddi_num_registered [FDDI_MAXRINGID);
100 #define FddiNumRegistered (fddinum_registered [ringid])

101 Objid fddiaddress-table [FDDIMAXRINGID][FDDI_MAX_STATIONS];
102 #define FddiAddressTable (fddiaddress-table [ringid))

103 /* Below is part of the OPBUG 2081 patch: FB ended here, before. -Nix */

135

104 /* Event handles for the TRT are maintained at a global level to '
105 /* allow token acceleration mechanism to adjust these as necessary '
106 /* when blocking and reinjecting the token. TRT..handle simply *
107 /* represents the TRT for the local MAC *
106 Evhandle fddL..trt...handle [FODDLMAX...RINGJDJ[FDOI...MAX_.STATIONSJ;
109 #define FddL.Trt...Handle (fddi...trt...handle [ring-idJ)
110 #define TRT...handle Fddi...Trt-Mandlo [my-..address]

111 1* Similarly, the TRT data structure Is maintained on a global level. *
112 FddiT...Timer* fddi-trt [FDDI-MAX...RINGJDJ (FDDI_MAX_STATIONS];
113 #define Fddi...Trt (fddi~trt [ring....dj)
114 #def ine TRT Fddi...Trt [my...addressJ

115 /* Registers to record the expiration time of each TRT when token is
116 blocked. */
117 double fddi...trt...exp..time (FOOL-MAXRING_10) (FOOIMAX...STATIONSJ;
118 #define FddiTrt...ExpTime (fddi~trt~exp...time [ringjidJ)

119 /* the 'Late...Ct' flag is declared on a global level so that it can be
120 *
121 /* set at the tim ewhere the token is injected back into the ring. *
122 int fddi-late-.ct (FODt_MAXRING....0J (FODDMAX_.STATIONSJ;
123 #define Fddi-.Late-.Ct (fddi-late-ct (ring...idJ)
124 #define LateCt Fddi...Late-.Ct (my..addressJ

125 /* Convenient macro for setting TRT for a given station and absolute
126 time. */
127 #define TRT_SET(stationjid.abs~time) fddi-timer~set (Fddi_.Trt
128 [stationId], abs...time - op...slm-.timeo): Fddi_.Trt...Handle [station id)
129 - op...intrpt-schedule-remote (abs-.time. FDDIC...TRTEXPIRE.
130 FddiAddressTable [statlon,.idJ);

131 f* State variable definitions *
132 typedef struct
133
134 FSM_SYSSTATE
135 int sv-ring...id;
136 FddiTTimer* sv,-.THT;
137 double sv_T_Req;
138 double svTPri [8);
139 Objid sv...my...objid;
140 int sv...spawn-token;
141 int sv...my~address;
142 Packet* sv...tk...pkptr;
143 double sv...sync_bandwidth;
144 double sv...sync...pc;
145 int sv...restricted;
146 int sv-res,..peer;
147 int sv-tk_registered;
148 Icl* sv-to-llc...ici..ptr;

136

149 int sv..tk..trace-.ofl;
150)fddL~mac...nult~state;

151 #define pr-.state...ptr ((fddijuac-mult..state*) SimI....od-..State...Ptr)
152 #define ring-.id pr~state~ptr-)svring...d
153 #define THT pr~state..ptr->svT.HT
154 #define T-.Req pr...state...ptr->svTReq
155 #define T-Prl pr..state...ptr->sv_.T...Prl
156 #define my...objld pr-state...ptr->sv.-.my~..objld
157 #def ine spawn-..token pr-state...ptr->sv-.spawn...token
158 #define my...address pr~state..ptr->sv..jy-.address
159 #define tk...pkptr pr~state..ptr->sv-tk...pkptr
160 #define sync-.bandwidth pr..state...ptr->sv...sync..bandwidth
161 #define sync~pc pr..state...ptr->sv..sync...pc
162 #define restricted pr..state..ptr->sv...restrlcted
163 #define res~peer Pr-state-ptr->sv-res-.peer
164 #define tk...registered pr...state..ptr->sv-.tk...registered
165 #define tojllc-lcicptr pr..state..ptr->sv...to..jlc..ici..ptr
166 #define tk..trace...on pr-state-ptr->sv~tk..trace~on

167 /* Process model interrupt handling procedure *

168 void
169 fddi _mac-mult (
170
171 /* Packets and ICI's
112 Packet* mac...frame...ptr:
113 Packet* pdu...ptr;
174 Packet* pkptr;
175 Packet* data-.pkptr;
176 Ici* ici-.ptr;

177 /* Packet Fields and Attributes *
178 int req-.pri, svc-.class. req...tk-class;
179 int frame-.control, src...addr:
180 mnt pk..len. priljevel;
181 static
182 int *da-ptr. dest...addr[);

183 /* Token - Related */
184 int tk-ujsable, res...station. tk...class;
185 mnt current-tk-.class;
186 double accum...sync;

187 /* Timer - Related */
188 double tx...time, timer..remainlng, accum_bandwidth;
189 double tht...value:

190 /* Miscellaneous *
191 int I;

137

192 int spawn-statlon. phy.arrival;
193 char errorstring [512):
194 tnt numframes-sent. num_bits-sent;

195 /* 26DEC93: loop management variables, used in RCVTK *l
195 /* and ENCAP states. -Nix *1
197 tnt NUMPRIOS;
198 lnt punt;
199 lnt q-check;

200 /* 08FEB94: case management variables, used in FRREPEAT. -Nix */
201 tnt for-me:
202 tnt count-addees;

203 /* 08MAR94: "field holding" variables, used In FR_REPEAT. -Nix */

204 Packet* lnfo-ptr;

205 FSMENTER (fddimacmult)

206 FSMBLOCKSWITCH
207
206 /* --- *

209 /** state (UNIT) enter executives **/
210 FSMSTATEENTERFORCED (0, state0_enterexec. "INIT)
211 {
212 /* Obtain the station's address . This is an attribute */
213 /* of this process. Addressing is simplified by */
214 /* simply using integers, and only one mode. */
215 /* This mode is 16 bit addressing unless the */
216 /* packet format 'fdd1_macfr' is modified. *I
217 myobjid - opid_self(): /* 29DEC93 */
218 opimaobjattrget (myobjid. "stationaddress*. &my-address);

219 /* Register the station's object id in a global table. */
220 /* This table is used by the mechanism which improves */
221 /* simulation efficiency by 'Jumping over' idle periods */
222 /* rather than circulating an unusable token. */
223 fddistationreglster (myaddress. myobjid);

224 /* Obtain the station latency for tokens and frames. */
225 /* Default value is set at 100 nanoseconds. */
226 Fddi_StLatency - 100.Oe-09;
227 opima_sim_attr-get (OPCIMADOUBLE, "station_latency',
228 &Fddi_StLatency);

229 /* Obtain the propagation delay separating stations. */
230 /* This value is given in seconds with default value 3.3 microseconds.
231
232 Fddi_PropODelay - 3.3e-06;

138

233 op-ima_simattrget (OPCIMADOUBLE. "propdelay*.
234 &Fddl_Prop_Delay);

235 /* Derive the Delay for a 'hop' of a freely circulating packet. */
236 FddilTkHop_Duiay - Fddi_PropDelay + FddiStLatency;

237 /* The TPri [U state variable array supports priority */
238 /* assignments on a station by station basis by */
239 /* establishing a correspondence between integer priority */
240 /* levels assigned to frames and the maximum values of the*/
241 /* Token holding timer (THT) which would allow packets to be*/
242 /* sent. Eight levels are supported here, but this can easily */
243 /* be changed by redimensioning the priority array. */
244 /* By default all levels are identical here, allowing */
245 /* any frame to make use of the token, so that in fact */
246 /* priority levels are not used in the default case. */
247 /* 01JAN94: (8-I) is a quick attempt to impart different weighting */
248 /* scales on each priority level, and is not necessarily realistic.-Nix
249
250 for (I - 0: 1 < 8; 1++)
251 (
252 TPri[i] - (double) FddilTOpr/(8.0 - I); /* O1JAN94 */
253 /* printf(OINIT: TPri[fd] - %d; Fddi_.T_Opr - Sd\n, */
254 /* i. TPri[i), Fddi_T_Opr); */
255

256 /*Create the token holding timer (THT) used to restrict the */
257 /* asynchronous bandwidth consumption of the station */
258 THT - fddi_timercreate ();

259 /* Create the token rotation timer (TRT) used to measure the */
260 /* rotations of the token, detect late tokens and initialize */
261 /* the THT timer before asynchronous tranmsmissions. */
262 TRT - fddi-timer-create (;

263 /* Set the TRT timer to expire in one TTRT */
264 TRT_SET (myaddress. opsimtime () + FddiTOpr);

265 /* Initialize the LateCt variable which keeps track. */
266 /* of the number of TRT expirations. */
267 LateCt - 0;

268 /* initially the ring operates in nonrestricted mode */
269 restricted - 0;

270 /* Create an Interface Control Information structure */
271 /* to use when delivering received frames to the LLC. */

139

272 to_1lc_Iclptr - op.lci-create (*fddi-maclind');

273 /* The *tk-registered' variable Indicates If the station */
274 /* has registered its intent to use the token. */
275 tk registered - 0:

276 /* Determine if the model Is to make use of the token */

277 /* 'acceleration' mechanism. If not, every passing of the */

278 /* token will be explicityly modeled, leading to large */
279 /* number of events being scheduled when the ring is idle */
280 /* (i.e. no stations have data to send). */
281 opima_sim_attrget (OPC_IMAINTEGER, "acceleratetoken*.
282 &FddlTkAccelerate):

283 /* Obtain the synchronous bandwidth assigned */

284 /* to this station. It Is expressed as a */
285 /* percentage of TTRT. and then converted to seconds */

286 opimaobjattrget (myobjid. "sync bandwidth*, &syncpc):
287 sync-bandwidth - syncpc * FddJ_T_Opr;

288 /* Only one station in the ring is selected to */
289 /* introduce the first token. Test if this station is it. */
290 /* If so, set the 'spawntoken' flag. */
291 opimaasim_attrget (OPC_IMA_INTEGER, "spawn station*.
292 &spawnstation);
293 spawntoken - (spawnstation - my-address);

294 /* If the station is to spawn the token, create */
295 /* the packet which represents the token. */

296 if (spawn-token)
297
298 tkpkptr - oppkcreatefmt (*fddi_mac_tko):

299 /* assign its frame control field */
300 oppknfdset (tkpkptr, "fco, FDDI_FC_TOKEN):

301 /* the first token issued is non-restricted */
302 oppk-nfd-set (tk-pkptr, "class., FDDI_TK_NONRESTRICTED);

303 /* The transition will be made into the ISSU_TK */

304 /* state where the tk-usable variable is used. */
305 /* In case any data has been generated, prset */
306 /* this variable to one. */
307 tkusable - 1:

308 /* When sending packets the variable accum_bandwidth is */
309 /* used as a scheduling base. Init this value to zero. */

140

310 /* This statement is required in case this is the spawning */
311 /* station, and the next state entered is ISSUETK */

312 accumbandwidth - 0.0;
313

314 /** state (INIT) exit executives *
315 FSM_STATEEXIT_FORCED (0, stateO-exit-exec. "INITO)
316
317

318 /** state (INIT) transition processing */
319 FSMINITCOND (spawntoken)
320 FSM_DFLTCOND
321 FSM. TEFTLOGIC ("INIT")

322 FSM_TRANSIT.SWITCH
323 1
324 FSMCASE_TRANSIT (0. 2. state2_enterexec, ;)
325 FSM_CASE_TRANSIT (1. 1. statelenter_exec.)
326
327 I* - ---*

328 / state (IDLE) enter executives **I
329 FSM_STATEENTER_UNFORCED (1. statelenterexec, "IDLE")
330
331

332 /** blocking after enter executives of unforced state. */
333 FSM_EXIT (3,fddi_macmult)

334 /* state (IDLE) exit executives *
335 FSM_STATEEXIT_UNFORCED (1. statelexitexec, "IDLE")
336
337 /* Determine if a trace is activated for the FDDI model */
338 tktrace_on - op-prgodbbItrace_active ("fddi_tk');

339 /* Trap packets arriving from physical layer so that their */
340 /* FC field can be extracted before evaluating conditions */
341 if (opintrpttype () -- OPCINTRPT-STRM && op-intrpt-strm ()
342 !- FDDILLCSTRMIN)
343
344 /* Acquire the arriving packet. */
345 pkptr - oppk-get (FDDIPHY_STRM_IN);

346 /* Determine the type of packet by extracting */
347 /* the frame control field. */
348 oppknfd-get (pkptr. "fc", &frame_control);

349 /* Physical layer arrival flag is set. */

350 phyarrival - 1;

141

351
352 else(
353 /* The interrupt is not due to a physical layer arrival. */
354 phyarrival - 0;

355 /* If the interrupt Is a remote interrupt with specified code. it
356 signifies */
357 /* the reinsertlon of the token into the ring after an idle period. This
358 only */
359 /* occurs if the token acceleration mechanism is active. */
360 if (opintrpt-type () - OPCINTRPTREMOTE && op-intrpt-code
361) - FDDICTKINJECT)
362
363 /* create a new token */
364 tk.pkptr - op-pkcreatefmt ('fddi_mac_tk');

365 /* assign its frame control field */
366 op.pk-nfd-set (tk-pkptr. "fco, FDDI_FC_TOKEN);

367 /* the token is non-restricted */
368 op-pknfd-set (tk.pkptr, *class'. FDDI_TK_NONRESTRICTED);

369 /* insert it into the ring */
370 op.pksend (tkpkptr. FDDI_PHYSTRMOUT);
371 }
372
3•3

374 /* state (IDLE) transition processing **/
375 FSM_INITCOND (TK_RECEIVED)
376 FSMTESTCOND (RC_FRAME)
3T7 FSMTESTCOND (TRTEXPIRE)
378 FSM_TESTCOND (FRAME_ARRIVAL)
379 FSMDFLT_COND
380 FSMTESTLOGIC ("IDLE")

381 FSM_TRANSITSWITCH
382
383 FSMCASETRANSIT (0. 3. state3_enterexec, :)
384 FSMCASETRANSIT (1. 4, state4_enterexec, ;)
385 FSM_CASETRANSIT (2. 7. state7_enterexec, :)
386 FSM_CASETRANSIT (3. 8. state8_enterexec, ;)
387 FSMCASE_TRANSIT (4. 1. statel-enterexec, ;)
388
389 /* -- *

390 /** state (ISSUE_TK) enter executives **/
391 FSMSTATEENTER_FORCED (2, state2_enterexec. "ISSUETK")
392 {
393 /* If the token is sent without having been used, and the station */

142

394 /* has no data to send, then indicate this fact to the */
395 /* token acceleration mechanism which may have an */
396 /* oppurtunity to block the token. */
397 If (!tkusable && op-q_stat (OPC_OSTATPKSIZE) -- 0.0)
398 (
399 /* Note that if the token cannot be blocked. */

400 /* this procedure will forward the token physically. */
401 fdditkindicatenodata (tk.pkptr, my-address,
402 accum_bandwidth):
403
404 else(
405 if (tktraceon -- OPCTRUE)
406 {
407 sprlntf (strO, "Issuing token. accum.bw (3.9f). prop-del
408 (3.9f)", accum-bandwidth, FddiPropDelay):
409 op-prgodbprintmajor (strO, OPCNIL);
410 }

411 /* Send out the token packet using the accumulated */
412 /* consumed bandwidth as a scheduling base. */
413 /* In the case of the initial spawning of the token */
414 /* this will be zero; otherwise this variable will */
415 /* reflect the bandwidth consumed since the last capture */
416 /* of the usable token. Propagation delay is also accounted for. */
417 oppk_senddelayed (tk_pkptr, FDDI_PHY_STRM_OUT,
418 accumbandwidth + FddiPropDelay);
419
420

421 /** state (ISSUETK) exit executives */
422 FSM_STATEEXIT_FORCED (2, state2_exit-exec, "ISSUETKO)
423
424

425 . state (ISSUETK) transition processing */
426 FSM_TRANSIT_FORCE (1, statelenterexec. ;)
427 /* --- *

428 /* state (RCVTK) enter executives **/
429 FSM_STATE_ENTER_FORCED (3, state3_enterexec. "RCVTK")
430
431 /* The arriving packet, when received in the IDLE state */
432 /* is placed in the variable 'pkptr'. Since it is now */
433 /* known that it is a token, it can be placed in 'tk-pkptr. */
434 tk-pkptr - pkptr;

435 /* Load the token's class into the temporary variable 'tkclass.' */
436 oppknfd-get (pkptr. "class". &tk_class);

437 /* If the token is restricted, determine for which station. */

143

438 if (tk-class - FDDI_TK_RESTRICTED)
439
440 /* Place the station address in the variable 'resstation' */
441 /* which may factor in to the determination of token usability. */
442 op-pk-nfd-get (tk-pkptr, "res_station". &res_station);
443

444 /* Determine if the token is usable: */

445 /* assume by default that it is not */
446 /* Subsequent conditions may override this. */
447 tkusable - 0;
448 /* The token can only be usable if there are frames enqueued */
449 /* 27DEC93: the entire bank of subqueues must be checked.
450 /* starting at the highest priority (corresponding to */
451 /* synchronous traffic), and stopping when a packet is */
452 /* found. Then the loop is broken. -Nix */
453 NUMPRIOS - 9;
454 for (i = NUMPRIOS - 1: 1 > -1; i--)
455
456 if (opsubq.stat (i. OPCQSTATPKSIZE) > 0.0)
457
458 /* examine the attributes of the packet at the */
459 /* head of the queue. */
460 /* fddiload_frameattrs (&destaddr. &svcclass, &pri-level); */
461 fddiloadframeattrs (dest-addr. &svcclass, &pri-level);

462 /* If synchronous data is queued, the token is */
463 /* necessarily usable, regardless of timing conditions. */
464 if (svcclass -- FDDISVCSYNC)
465
466 tkusable - 1;
461 break;
468 }
469 else(
470 /* Otherwise, if asynchronous data is queued, it must */
471 /* meet several criteria for the token to be usable. */

472 /* The token is only usable only if it is early. */
473 if (LateCt -= 0)
474
475 /* The token's class must be nonrestricted, unless */
476 /* this station is involved in the restricted transfer. */
477 if (tkclass == FDDITKNONRESTRICTED II res-station
478 - my-address 11 restricted)
479
480 /* Test the frame's priority assignment against the current TRT */
481 /* This test uses the priority indirection table T_Pri */
482 /* so that only packets whose TPri [pri-level] exceeds */
483 /* the TRT can be transmitted. In other words, by */
484 /* assigning lower values to T_Pri for a given priority */

144

485 /* level, packets of that level will be further restricted */
486 /* from using the ring bandwidth. */
487 if (TPrl [pri_level) >- fddl_timer_value (TRT))
488
489 tkusable - i;
490 break;
491
492
493
494
495 1 /* closes the "if (opsubq-stat (OPCOSTATPKSIZE) > 0.0"
496 statment *1
497)/* closes the "for' loop */

498 /* If the token is usable, timers must be readjusted. */
499 if (tkusable)
500 1
501 /* The timer adjustment depends on whether the token is early or late.
502 *I
503 if (LateCt -- 0)
504 1
505 /* Transfer the contents of TRT into THT. *I
506 fddi_timercopy (TRT, THT):

507 /* Disable the THT timer. */
508 fddi-timerdisable (THT):

509 /* Reset TRT to time the next rotation. */
510 op_ev_cancel (TRThandle):
511 TRT_SET (myaddress, op-simtime () + FddiTOpr);
512
513 else(
514 /* If the token is late, set the THT to its expired */
515 /* value, and disable it. This will prevent any */
516 /* asynchronous transmissions from occuring. */
517 fddi_timersetvalue (THT, Fddi_T_Opr);
518 fdditimerdisable (THT);

519 /* clear the Late token counter (note that TRT is not modified, */

520 /* so that less than a full TTRT remains before TRT expires again. */
521 LateCt - 0:
522 }
523 }

524 /* If the token is not usable, different adjustments are made. */

525 else{
526 /* Again, the adjustments depend on the lateness of the token */

527 if (LateCt -- 0)
528 {

145

529 /* If the token is not late, the TRT Is reset to time the next rotation.
530
531 opevcancel (TRT_handle);
532 TRTSET (myaddress, op-sim_time () + Fddi_T_Opr):
533
534 else{
535 /* clear the Late token counter (note that TRT is not modified, */

536 /* so that less than a full TTRT remains before TRT expires again. */

537 LateCt - 0:
538 }

539 /* also, account for the time needed by the token */

540 /* to traverse the station, since it is about to be sent. */
541 /* Note: station latency is not inclusive of token */
542 /* transmission time. but only of the time required to *1
543 /* process and repeat the token's symbols. */
544 accum_bandwidth - FddiStLatency;
545
546

547 / state (RCVTK) exit executives */
548 FSM_STATEEXITFORCED (3. state3_exitexec, "RCVTKO)
549
550

551 /** state (RCVTK) transition processing *
552 FSM_INIT_COND (tkusable)
553 FSMDFLT_COND
554 FSM_TEST_LOGIC (ORCVTK*)

555 FSM_TRANSIT_SWITCH
556
557 FSM_CASE_TRANSIT (0. 9. state9genter-exec, :)
558 FSM_CASETRANSIT (1. 2. state2_enterexec, ;)
559
560 I* -- *

561 /** state (FRRCV) enter executives **/
562 FSM_STATEENTER_FORCED (4. state4_enterexec, "FRRCV*)
563 {
564 /* A frame has been received from the physical layer. Note that */

565 /* at this time, only the leading edge of the frame has arrived. */

566 /* Extract the frame's source address (this will be used to */
567 /* determine whether or not to strip the frame from the ring). */
568 op-pknfd-get (pkptr, "src_addr". &srcaddr);
569

570 /** state (FRRCV) exit executives **/
571 FSM_STATE_EXIT_FORCED (4. state4_exitexec, "FRRCV")

146

572
573

574 /* state (FRRCV) transition processing **
575 FSMINITCOND (STRIP)
576 FSMDFLT_COND
577 FSM_TESTLOGIC ('FRRCV")

578 FSM_TRANSIT_SWITCH
579 (
580 FSMCASE_TRANSIT (0. 5, state5_enterexec, ;)
581 FSM_CASE_TRANSIT (1, 6. state6_enter_exec, ;)
582
583 /* -- *

584 /** state (FRSTRIP) enter executives **/
585 FSM_STATE_ENTERFORCED (5. state5_enterexec. "FRSTRIP')
586
587 /* Destroy the frame which has now circulated the entire ring. */
588 op_pk_destroy (pkptr);
589

590 /** state (FRSTRIP) exit executives **
591 FSM_STATE_EXIT_FORCED (5, state5_exitexec, "FRSTRIP')
592
593

594 /* state (FRSTRIP) transition processing **I
595 FSM_TRANSITFORCE (U. statelenterexec, ;)
596 /* -- *

597 I* state (FRREPEAT) enter executives **/
598 FSM_STATEENTERFORCED (6. state6_enter_exec, 'FR_REPEAT')
599
600 /* Extract the destination address of the frame. */
601 /* 20FEB94: use a pointer to the array dest-addr, */
602 /* since referring to destaddr directly produces */
603 /* unexpected results. -Nix */
604 oppknfdget (pkptr. "destaddr', &da-ptr);

606 /* printf('*da.ptr: %d; daptr: %d; &da-ptr: Wd\n', *da-ptr, daptr,
607 &da-ptr); */

609
610 for (i - 0: i < NUM_STATIONS+I: i+-+):
611 destaddr[i] - da-ptr[i];
612
613 **
614 /* 02MAR94: print out the address, and the contents. */

147

615 /* for (I - 0; i < NUNSTATIONS+1; 1++) */
616 /*{ *I
617 /* prlntf('1.FRREPEAT:element: Sd, address: %X/Sd. content: %d\n,.
618
619 /* i, &(dest-addr[l]), &(destaddr[i]). destaddril]);*/
620 /* }*

621 I

622 /* 08FEB94: re-Initialize counters. -Nix */
623 for-me - 0;
624 countaddees - 0;

625 /* 08FEB94: inspect the address field; interested in *1
626 /* whether this packet is sent here only. or here and *1
627 /* to others, or to others only.Note that a real packet */
628 /* would carry all the addresses; the simulation refers */
629 /* to memory locations. -Nix
630 for (i - 1; i < NUMSTATIONS+1; i+-+)
631 {
632 if (dest-addr[il - 1)
633 count-addees +- 1;
634

635 /* If the frame is for this station, make a copy */
636 /* of the frame's data field and forward it to *I
637 /* the higher layer. */
638 /* if (destaddr -- my-address) /
639 /* 08FEB94: if this packet is addressed only to this */
640 /* station, make a copy of the frame's data field and */
641 /* and forward It to the higher layer. -Nix */
642 /* (a) If the packet is addressed to me only... *1
643 /* (note offset applied) "/
644 if (destaddr[my_address*l] -- I && count_addees - 1)
645

646 /* **************.

647 /* printf(*Here is Case 1.\n'): (

648 /* ******** *** ***** /

649 /* record total size of the frame (Including data) */
650 pk_len - oppktotal_size-get (pkptr);

651 /* decapsulate the data contents of the frame */
652 /* 29JAN94: a new field, "pri*. has been added to */
653 /* the fddillcfr packet format in the Parameters *1
654 /* Editor, so that output statistics can be */
655 /* generated by class and priority. -Nix */
656 op-pk-nfd-get (pkptr, "info", &data-pkptr);
657 op-pknfdget (pkptr. "pri", &prilevel);

148

658 /* The source and destination address are placed in the */
659 /* LLC's ICI before delivering the frame's contents. */
660 opIcliattr-set (to_llc icilptr, "srcaddr*, src_addr);
661 optici_attrset (tollc icilptr. "dest-addro, da-ptr);
662 opiciInstall (to-llcIci-ptr);

663 /* 18FEB94: print out the address, and the contents. *I
664 for (I - 0: 1 < NUM_STATIONS+1; I++)
665
666 dest-addr[i] - da.ptr[i]:

668 /* printf('2.FRREPEAT:element: %d. address: %X/Id. content: Wd\n', *
669 /* i. &(dest-addr[i]). &(dest-addr[i]), destaddr[i])) */

671

672 /* Because, as noted In the FRRCV state, only the */
673 /* frame's leading edge has arrived at this time, the */
674 /* complete frame can only be delivered to the higher */
675 /* layer after the frame's transmission delay has elapsed. */
676 /* (since decapsulation of the frame data contents has occured, *1
677 /* the original MAC frame length is used to calculate delay) */
678 tx_time - (double) pklen / FODITX_RATE:
679 op.pk-senddelayed (datapkptr, FDDILLC_STRMOUT, tx-time);

680 ,* Note that the standard specifies that the original */

681 /* frame should be passed along until the originating station */
682 /* receives it, at which point it is stripped from the ring. */
683 /* However, in the simulation model, there is no interest */
684 /* in letting the frame continue past its destination unless */
685 /* group addresses are used, so that the same frame could be */
686 /* destined for several stations. Here the frame is stripped *

687 /* for efficiency as It reaches the destination; if the model *,

688 /* is modified to include group addresses, this should be change. v/
689 /* so that the frame is copied and the original repeated. */
690 /* Logic is already present for stripping the frame at the origin. *1
691 op.pk-destroy (pkptr);
692

693 /* OBFEB94: (b)...or if this packet is not for me at all... -Nix */
694 else if (destaddr[my-address+1J -- 0)
695

696 /* ****************************** */
697 /* printf('Here is Case 2.\n"): */
698 /*****************1

699 /* Repeat the original frame on the ring and account for */
700 /* the latency through the station and the propagation delay */

149

701 /* for a single hop. */
702 /* (Only the originating stat.r" can strip the frame). */
71 op-pksend-delayea ':kptr. FDOIPHYSTRMOUT,
704 Fddi_StLatency ý- FddiPropOelay);
705 }

706 /* 08FEB94: (c).. .or if this packet is for me and for others, will */
107 /* need to send the contents to the SINK, then re-encapsulate the */
706 /* packet for further transmission. Much of this code is */
709 /* duplicated from the above. -Nix

710 else if (dest-addr[my-address+l] -1 && count-addees > 1)
711 {

712 /* **************************** */
713 /* printf('Here is Case 3.\n'): *
714 /* ***************

715 /* record total size of the frame (including data) */
716 pk_len - oppktotal-size.get (pkptr);

717 /* decapsulate the data contents of the frame */
718 op-pk-nfd-get (pkptr, "Infoe. &data-pkptr);
719 op-pk-nfdget (pkptr. "pri. &prillevel);

720 / * *********************************

721 /* Print out the address of the *info* field information */
722 /* printf("Case 3: 'info' is located at address %X\nm. &data-pkptr); *1
723 /m*

724 /* 08MAR94: copy the "info" address into a local variable, so that */
725 /* it may be held for re-installation. -Nix
726 infoptr - op-pk-copy(data-pkptr);

727 /* The source and destination address are placed in the */
728 /* LLC's ICI before delivering the frame's contents. */
729 op-ici-attrset (to_llc_iciptr. "src_addr". srcaddr);
730 op-ici-attrset (to_llcici-ptr. "destaddro, destaddr);
731 opici-install (tollcici.ptr);

732 /* Because, as noted in the FRRCV state, only the */
733 /* frame's leading edge has arrived at this time. the */
734 /* complete frame can only be delivered to the higher */
735 /* layer after the frame's transmission delay has elapsed. */
736 /* (since decapsulation of the frame data contents has occured, */
737 /* the original MAC frame length is used to calculate delay) */
738 txtime - (double) pk-len / FODITXRATE;
739 oppk-send-delayed (data.pkpt-. FODI_LLC_STRMOUT, txtime);

150

740 /* 08FEB94: remove this station from the dest_addr array, reassemble */
741 /* the packet. and send the packet on its way. -Nix */

742 destaddr~my-address+1) - 0;
743 op_pk_nfdset(pkptr,"src-addr*. src.addr):
744 oppknfdset(pkptr.'dest.addr*. destaddr);
745 oppknfdset(pkptrpril, pri_level):
746 oppknfd-set(pkptr.'info*. infoptr):
747 op_pk_senddelayed (pkptr. FDDIPHY_STRM_OUT.
748 FddiSt_Latency + FddiPropDelay):

749

750

751 /* state (FRREPEAT) exit executives *
752 FSM_STATEEXIT_FORCED (6, state6_exit-exec. "FRREPEATO)
753
754

755 * state (FRREPEAT) transition processing 1

756 FSM_TRANSIT_FORCE (1. statel_enterexec.)
757 I* -- ---

758 / state (TRTEXP) enter executives **/
759 FSM_STATEENTER_FORCED (7. state7_enter-exec. "TRTEXP")
760
761 /* The timer is reset and allowed to continue running. */

762 TRT_SET (myaddress. opsim_time () + Fddi_T_Opr):

763 /* The late token counter is incremented. This will */
764 /* prevent this station from making any asynchronous */

765 /* transmissions when it next captures the token. */
766 LateCt++:

767

768 /* state (TRTEXP) exit executives */
769 FSM_STATEEXIT_FORCED (7, state7_exit-exec. "TRTEXP")
770 {
771 }

772 /** state (TRT_EXP) transition processing *
773 FSM_TRANSIT_FORCE (1. statelenterexec. ;)
774 I* . --*

775 * state (ENCAP) enter executives **/
776 FSM_STATE_ENTERFORCED (8. state8_enter-exec, "ENCAP")
777 {
778 /* A frame has arrived from a higher layer; place it in 'pdu-ptr'. */
779 pduptr - opppk-get (op-intrptstrm ()):

151

780 /* Also get the interface control information ~
781 /* associated with the new frame. *

782 ici...ptr - op...intrpt...ici U
783 if (lci...ptr -- OPC_NIL)
784
785 sprintf (error-string, 'Simulation aborted; error in object
786 (Ud)". op-id-self M);
787 op..sim...end (error_string. "fddi _mac: required ICI not
788 received*. ,

789

190 /* Extract the requested service class *

791 1* (e.g. synchronous or asynchronous). *
792 if (op-ici _attr-exists (ici...ptr, "svc..classo))
793 op...ici attr_get (ici _ptr. "svc-class". &svc_class);
794 else svc-class - FDDISVCASYNC;

796 /* for (i-0; i<NUM.STATIONS+1; i4-+) *
797 /* printf(*ENCAP a.Field:%d, Address(dec/hex):%d/%X. Contents:%d\n*.
798
199 /* i. &(dest-addr[iJ), &(dest-addr~i])) dest-addr~i]); *

801 /* Extract the destination address. ~
802 /* 20FEB94: use a pointer to the array, since the *

803 /* use of dest-array as its own pointer causes ~
80 /* unexpected results. -Nix */
805 op~ici...attr..get (ici..ptr. 'dest..addr*. &da...ptr);

807 1* printf("&da...ptr: %d/ZX: da-.ptr: %d\n\n". &da-.ptr. &da...ptr. da...ptr);
808B *
809 /* for (i-0; i<NUM...STATIONS+1; i++) *
810 /* printf("%d: &da...ptr: %d/ZX: da...ptr: %d\n\n*, i. &da_ptr, &da...ptr.
811 da...ptr); :
812 /***********************************

813 for (i-0: i<NUMSTATIONS-'-1 i4-+)
814
815 dest-addr~i] - da...ptr[i);
816

817 /*********************************/

818 1* for (i-0; i(NUMSTATIONS+1; i++) *
819 /* printf("ENCAP b.Field:%d, Address(dec/hex):%d/%X, Contents:%d\n",
820 *
821 /* i, &(dest_addr~i]), &(dest..addr~i]), dest_addr~i)); *

152

822

823 /* If the frame is asynchronous, the priority and */
824 /* requested token class parameter may be specified. */

825 if (svcclass - FDDISVCASYNC)
826
827 /* Extract the requested priority level. */
828 if (op-iciattrexists (ici-ptr. "pri"))
829 opiciattr_get (iciptr. "pri", &req-pri):
830 else reqpri - 0;

831 /* Extract the token class (restrictred or non-restricted). */

832 if (op-iciattrexists (ici-ptr. *tk-class"))
833 opici_attr_get (iciptr, "tk_class', &req-tk-class);
834 else req.tk.class - FDDI_TK_NONRESTRICTED;
835

836 /* Compose a mac frame from all these elements. */
837 macframe_ptr - op_pk_createfmt ("fddi_macfr*):
838 op-pknfdset (macframe-ptr, "svcclass', svcclass);
839 op.pknfd.set (mac_frame-ptr, "dest.addr*. dest_addr);
840 op-pk-nfd-set (macframe-ptr, "src-addr", my-address);
841 op-pk-nfd-set (macframe-ptr, "info", pdu-ptr);

842 if (svcclass - FDDISVCASYNC)
843
844 oppknfdset (macframe-ptr, "tkclassm. reqtk_class);
845 oppknfdset (macframe-ptr, "pril, req-pri);
846

847 /* 04JAN94: if the frame Is synchronous, assign it a separate */
848 /* priority so that It may be assigned its own subqueue, and */

849 /* thereby be assigned Its own probe for monitoring. -Nix */
850 if (svcclass - FODI_SVC_SYNC)
851
a52 op_pk_nfdset (macframeptr. "pri*. 8);
853

854 /* Assign the frame control field, which in the model */
855 /* is used to distinguish between tokens and ordinary */

856 /* frames on the ring. */
857 op.pk-nfd-set (mac-frame-ptr, "fc*, FDDI-FCFRAME);

858 /* Enqueue the frame at the tail of the queue. */
859 /* 27DEC93: at the tail of the prioritized queue. */
860 /* 04JAN94: must distinguish between synch & asynch. */
861 if (svc-class -- FDDISVCASYNC)
862 {
863 op.subqpkinsert (req-pri, mac-frame-ptr, OPCOPOSTAIL);

153

864
865 if (svc-class - FODlSVC-SYNC)
866t
867 op...subq-.pk-insert (8, mac-frame...ptr. OPC_OPOSTAIL):
88

869 /* if this station has not yet registered its intent to */
870 /* use the token, it may do so now since it has data to send */
871 if (!tk-registered)
872
873 fddi-tkregister (:
874 tk_registered - 1:
875
876

877 /** state (ENCAP) exit executives *
878 FSM_STATE_EXIT_FORCED (8. state8_exit-exec. "ENCAP")
879
880 }

881 /* state (ENCAP) transition processing */
882 FSM_TRANSIT_FORCE (1, statel-enter-exec. :)
883 I* --*

884 /* state (TXDATA) enter executives **I
885 FSM_STATE_ENTERFORCED (9, state9genter_...ec. "TXDATA")
U86 1
887 /* In this state, frames are transmitted until the "/
B88 /* token is no longer usable. Frames are taken from *1
889 /* the single input queue in FIFO order. "/

890 /* Reset the accumulator used to keep track of bandwidth */
891 /* consumed by the transmissions. Because all the transmissions */
892 /* are scheduled to happen at the appropriate times, but */
893 /* these schedulings occur instantly. this accumulator serves */
894 /* as the scheduling base for the transmissions. */
895 /* In other words, each successively transmitted frame */
896 /* is delayed relative to the previous one by the time which */
897 /* the latter took to send. At the end of transmission (e.g, */
898 /* when the token is no longer usable), this accumulator */
899 /* serves to delay the forwarding of the token. */
900 accumbandwidth - 0.0:

901 /* Note that, because all tranmsmissions are */
902 /* scheduled, the value of the THT timer will not progress */
903 /* between shcedulings (these all happen in zero time), and so */
904 /* the variable 'thtvalue' is used to emulate the timer's progress. */
905 thtvalue = fdditimervalue (THT);

906 /* Reset an accumulator which reflects the consumed */

154

907 /* synchronous bandwidth. */
908 accum sync = 0.0;

909 /* Reset counters for transmitted frames and bits. */

910 nun'_framessent = 0;
911 num_bitssent - 0:

912 /* The transmission sequence must end if the input queue */
913 /* becomes exhausted. Other termination conditions are */
914 /* embedded in the loop. */
915 /* 27DEC93: modify the loop to accomodate subqueue structure. */
916 /* A "for" loop is imposed over the original "while" loop. */
917 /* First. reset the break marker. *punt. -Nix */

918 punt - 0;
919 for (i - NUMPRIOS - 1: 1 > -1: i--)
920
921 while (opsubq-stat (i.OPCOSTATPKSIZE) > 0.0)
922
923 /* Remove the next frame for transmission. */
924 pkptr = opsubqpk-remove (i, OPC_OPOS_HEAD);

925 /* Obtain the frame's service class. */
926 oppknfdget (pkptr. "svcclass". &svcclass);

927 /* Synchronous and asynchronous frames are treated differently. */

928 if (svcclass -- FDDISVC-SYNC)
929
930 /* Obtain the frame's length, and compute *1
931 /* the time required to transmit it. "/
932 pk-len = op-pk-total-sizeget (pkptr):
933 txtime (double) pklen / FDDITX_RATE:

934 /* C-.ck if synchronous bandwidth allocation for this */
935 /* station would be exceeded if the transmission were to occur. */
936 if (accum-sync + txtlme > syncbandwidth)
937
938 /* The frame could not be sent without exceeding */

939 /* the allocated synchronous bandwidth. 1
940 /* so it is replaced on the queue. */
941 /* 27DEC93: in this case, i is the hignest priority, */
942 /* which is reserved for synchronous traffic. -Nix */
943 op-subqpkinsert (i. pkptr. OPCOPOS_HEAD);

944 /* Exit the transmission loop since the frame */

945 /* transmission request cannot be honored. */

946 punt = 1;
947 break;
948
949 else(
950 /* Send the frame into the ring after other frames have completed. */

155

951 /* Also, account for its proagation delay; because the token propagation
952 *
953 /* delay arid the frame propagation delay must be consistent, and the "/
954 /* token propagation delay is specified as a ring parameter (i.e.
955 stations */
956 /* are assumed to be equal'y spaced), the ring is intended to run with
957
958 /* the "delay" attributes of point-to-point links set at zero. */
959 op-pk-senddelayed (pkptr. FDDI_PHY_STRMOUT,
960 accumbandwidth + FddiPropDelay);

961 /* increase the consumed bandwidth to reflect this */
962 /* transmission. Also increase synchronous consumption. */

963 accumbandwidth += txtime;
964 accum_sync += tx.time;

965 /* Increase counters for transmitted bits and frames. */
966 num_framessent++;
967 num_bitssent +- pk-len;
968
969
970 else(
971 /* The request enqueued at the head of the queue is */

972 /* asynchronous. It may only be honored if the THT timer */
973 I* has not expired. */
974 if (tht-value >= Fddi_T_Opr)
975 {
976 /* replace the packet on the queue and exit the transmission loop. */

977 op-subqpk-insert (i, pkptr, OPCQPOS_HEAD);
978 punt = 1;
979 break:
980
981 else(
982 /* Obtain the priority assignment of the frame. */
983 op-pk-nfd_get (pkptr, "pri". &pri-level);

94 /* If the packet's assigned priority level */
985 /* is too low for it to be serviced, then exit the loop */
986 /* after replacing the packet in the queue. *1

987 /* ***************************

988 /* 08MAR94: print the values to be compared. -Nix */

989 /* printf("1. TXDATA: TPri[%d] < thtvalue ?\n", i); */
990 /* printf("%d < %d ?\n", T_Pri [i], thtvalue); */
991 /* *** */

992 if (T_Pri [pri_level] < tht_value)
993
994 op-subqpk-insert (i, pkptr, OPC_QPOSHEAD);
995 punt = 1;

156

996 break;
997

998 /* Obtain the frame's length, and compute the time */
999 /* which would be required to transmit it. *!

1000 pklen = op-pk-total-size-get (pkptr);
1001 txtime - (double) pk-len / FDDI_TXRATE;

1002 /* Determine the requested token class to be */
1003 /* released after this frame is transmitted. */
1004 op-pk-nfd-get (pkptr. "tk-class", &tkclass);

1005 /* If the station is in restricted mode, then it may */
1006 /* exit this mode if the class is now nonrestricted */
1007 /* or if the restricted peer is not the addressee. */
1008 if (restricted)
1009
1010 /* Determine the destination address for the new packet. */
1011 op-pk-nfd-get (pkptr. "destaddr". destaddr);

1012 /* if (tkclass - FDDITKNONRESTRICTED II */
1013 /* res-peer != destaddr) */
1014
1015 if (tklclass -- FDDITKNONRESTRICTED JJ
1016 destaddrEres.peer] != 1)
1017
1018 /* Exit restricted mode */
1019 restricted - 0;

1020 /* Modify the token to reflect the mode change. */
1021 op-pk-nfd-set (tk-pkptr. "class*.
1022 FDDI_TK_NONRESTRICTED);
1023
1024
1025 else[
1026 /* Determine the class of the current captured token. */
1027 oppk-nfd-get (tk-pkptr, "class",
1028 ¤ttk.class);

1029 /* When not in restricted mode, this mode may be entered */
1030 /* if the passed packet has the appropriate token class requested, */
1031 /* and the token is not already restricted. */
1032 if (tkclass -- FDDITK_RESTRICTED &&
1033 currenttkclass !- FDDITKRESTRICTED)
1034 {

1035 /* Enter restricted mode. */
1036 restricted = 1;

1037 /* Store the address of the resticted peer station. */

157

1038 /* oppk-nfdget (pkptr, "dest_addr", &res-peer): */
1039 oppk-nfd.get (pkptr. "dest-addr".
1040 &dest_addr[res-peer]):

1041 /* Modify the token to reflect the mode change. */
1042 op.pk.nfdset (tk-pkptr, "class',
1043 FDDI_TK.RESTRICTEO);
1044 op-pk-nfd-set (tk-pkptr, "res_station",
1045 res-peer);
1046
1 47

1048 /* Send the frame once previous transmissions have completed. */
1049 /* Account for propagation delay as well. */
1050 oppk.senddelayed (pkptr. FODI_PHY_STRMOUT.
1051 accumbandwidth + FddiPropDelay);

1052 /* Increment THT emulation variable, and consumed bandwidth accumulator.
1053
1054 /* 08MAR94: note that thtvalue is incrementing, not decrementing. -Nix
1055
1056 tht-value +- tx_time:
1057 accumbandwidth +- txtime:

1058 / *****************************
1059 /* OBMAR94: print the Token Holding Time value. -Nix */
1060 /* printf('2. TXDATA: thtvalue is %d\n", tht-value); */
1061 /* *** */

1062 /* Increase counters for transmitted bits and frames. */
1063 num-framessent++;
1064 num_bits_sent +- pklen;
1065
1066
1067 }/* closes the 'while' loop */
1068 if (punt == 1) /* If the 'while' loop was broken. */
1069 f
1070 punt - 0;1* then reset the 'break' marker, */
1071 break;/* and break out of the 'for' loop too. */
1072
1073 }/* closes the 'for' loop. *I

1074 /* Since the token is about to be sent, its transmission time */
1075 /* must be reflected in the accumulated bandwidth. This is not */
1076 /* done in the ISSUE_TK state because when the token is merely */
1077 /1 repeated, full transmission delay is not required, only */
1078 /* a small delay for repeating. */
1079 accumbandwidth +- FODICTOKENTXTIME:

158

1080 /* If the station has no more data to send (synchronous or */
1081 /* asynchronous), it should indicate this to the token acceleration */
1082 /* mechanism by deregistering its interest in the token. */
1083 /* 27DEC94: the original code must be modified to include a check */
1084 /* of subqueues. -Nix */
1085 qcheck - 1:
1086 for (i = NUMPRIOS - 1; i < -1; i--)
1087
1088 if (op-subq-stat (i. OPCOSTATPKSIZE) -= 0.0)
1089
1090 q-check = 0;
1091
1092 else
1093 q-check = 1;
1094 break;
1095
1096

1097 if (tk_registered && q-check -- 0)
1098
1099 tk-registered - 0;
1100 fdditk-deregister ():
1101
1102

1103 /** state (TXDATA) exit executives *
1104 FSM_STATEEXIT_FORCED (9, state9_exit-exec, "TXDATA")
1105
1106

1107 /** state (TXDATA) transition processing */
1108 FSM_TRANSIT_FORCE (2, state2_enterexec, :)
1109 /* -- *

1110 /** state (CLAIM) enter executives **/
1111 FSM_STATEENTER_UNFORCED (10, statelOenterexec, "CLAIM")
1112
1113 /* Obtain this station's object id which is used */
1114 /* to access the station's attribute assignments. */
1115 myobjid = opidself ();

1116 /* Using the object id, obtain the ring id. */
1117 /* The ring id is used by macros defined in the */
1118 /* header block to obtain "ring-global" values, /
1119 /* values shared by all stations on a ring. */
1120 op-imaobjattrget (myobjid, "ring_id". &ring_id);

1121 /* Initialize global variable values. */
1122 FddiTkBlocked = 0;
1123 FddiNumStations = 0;

159

1124 Fddi_NumRegistered - 0:

1125 /* Using the object id, obtain the value of 'TReq'. */
1126 /* the value of TTRT requested by this station. */
1127 op.imaobj-attrget (my_objid, "TReq". &TReq);

1128 /* The lowest value of TReq becomes TOpr for the ring as a whole. */

1129 if (TReq < FddiTOpr 1 FddiClalm_Start)
1130
1131 /* The TReq for this station is lower than any other to date *I

1132 /* so it is installed in the TOpr variable. */

1133 FddiTOpr - TReq;

1134 /* The flag indicating that the claim process is just */
1135 /* beginning may now be cleared. */
1136 FddiClaimStart - 0;
1137

1138 /* Request a self interrupt from the Simulation Kernel at the current */
1139 /* time so that after all stations have executed their claim states, */
1140 /* they can proceed with initializations. This is necessasary */
1141 /* because some initializations are based in the value of TOpr */
1142 /* and it must therefore be known that all stations have settled */

1143 /* on a final value. */
1144 op-intrpt-scheduleself (op.sim-time (). 0);
1145

1146 I** blocking after enter executives of unforced state. I
1147 FSM_EXIT (21.fddimac_mult)

1148 /** state (CLAIM) exit executives *
1149 FSMSTATE_EXITUNFORCED (10. statelOexit_exec, "CLAIM")
1150 {
1151

1152 /** state (CLAIM) transition processing *
1153 FSM_TRANSITFORCE (0, stateO-enter-exec. :)
1154 /* -- *
1155
1156 FSM_EXIT (1Ofddi macmult)
1157 1

1158 void
1159 fddimacmult_svar (prs-ptr,var_namevar_p-ptr)
1160 fddimacmult_state *prs_ptr;
1161 char *var name, **var-p-ptr;
1162

1163 FIN (fddimacmult_svar (prs.ptr))

160

1164 *var-pptr - VOSNIL;
1165 if (Vos-String-Equal (Vring-id" . var..name))
1166 *var-pptr - (char *) (&prs~ptr->sv...ring~id);
1167 if (Vos-.String...Equal ("THT* . var-name))
1168 *var~pptr - (char *) (&prs~ptr->svTHT);
1169 if (Vos...String-.Equal ("T-.Req" . var~name))
1170 *var-pptr - (char *) (&prs-ptr->sv-T-Req):
1171 if (Vos..StringEqual ("TPri" . var-.name))
1172 *var-pptr - (char *) (prs-ptr->sv_T_..Pri):
1173 if (VosString-Equal ("my...objid" . var...name))
1174 *var-pptr - (char *) (&prs-ptr->sv~my~objid):
1175 4f (VosString...Equal (*spawn-token" . var...name))
1176 *var~pptr - (char *) (&prs-ptr->sv-spawn..token);
1177 if (Vos-String-Equal ("my-address" . var...name))
1178 *var-pptr - (char *) (&prs-ptr->sv-my-address):
1179 if (VosString...Equal (mtk...pkptr* . var...name))
11e0 *var~pptr - (char *) (&prs...ptr->sv-tkpkptr):
1181 if (VosString...Equal ("sync..bandwidth" . var..name))

1182 *var-pptr - (char *) (&prs~ptr->sv-sync bandwidth);
1183 if (Vos_.String...Equal ("sync...pc* * var-name))
1184 *var~pptr - (char *) (&prs...ptr->sv...sync pc):
1185 if (VosString...Equal Crestricted' . var...name))
1186 *var-pptr = (char *) (&prs...ptr->sv restricted);
1187 if (VosString...Equal ("res...peer" . var-name))
1188 *var~pptr - (char *) (&prs..ptr->sv res peer):
1189 if (VosString..Equal (Vtk..registered* . var~name))
1190 *var~pptr - (char *) (&prs...ptr->sv...tk~registered);
1191 if (Vos...String...Equal ("to_lic_ici..ptr' . var name))
1192 *var-pptr - (char *) (&prs~ptr-)sv-to_lic-ici~ptr):
1193 if (Vos...String...Equal ("tk-.trace~on* . var_name))
1194 *var~pptr - (char *) (&prs..ptr->sv~tk trace on):

1195 FOUT;
1196

1197 void
1198 fddi _mac_mult~diag (
1199
1200 /* Packets and ICI's
1201 Packet* mac_frame...ptr:
1202 Packet* pdu...ptr;
1203 Packet* pkptr;
1204 Packet* data...pkptr;
1205 Ici* ici-ptr:

1206 /* Packet Fields and Attributes *
1207 int req-pri, svc-class. req-tk-.class;
1208 int frame-control, src-.addr;
1209 mnt pk~jlen, pri _level;
1210 static

r

161

1211 int *da-ptr, destaddr[];

1212 /* Token - Related */
1213 int tk-usable, resstation, tk-class;
1214 int current-tkclass;
1215 double accum-sync;

1216 /* Timer - Related */
1217 double tx-time, timerremaining, accum_bandwidth;
1218 double thtvalue;

1219 /* Miscellaneous */
1220 int
1221 int spawnstation, phyarrival;
1222 char errorstring [512);
1223 int numframessent, num_bitssent;

1224 /* 26DEC93: loop management variables, used in RCV_TK */
1225 /* and ENCAP states. -Nix */
1226 int NUMPRIOS;
1227 int punt;
1228 int qcheck;

1229 /* 08FEB94: case management variables, used in FR_REPEAT. -Nix */
1230 int for_me;
1231 int countaddees;

1232 /* 08MAR94: "field holding" variables, used in FRREPEAT. -Nix */

1233 Packet* info-ptr;

1234 FIN (fddi-mac_multdiag ())

1235 /* Print out values of timers, and late token counter. */
1236 /* Also print out data about restricted mode. */
1237 /* (This code may be executed by the simulation debugger */
1238 /* by invoking the command 'modprint'). */

1239 sprintf (str - mers (count upwards): TRT (%.9g), THT (%.9g)".
1240 fdditimer_- ue (TRT), fdditimer-value (THT));
1241 sprintf (stri. "Late-ct (%d)", LateCt);
1242 opprg-odb-print-major (strO, str1, OPCNIL);
1243 if (restricted)
1244 sprintf (strO. "token is in restricted dialog with (%d)\n",
1245 res-peer):
1246 else sprintf (strO. "token is unrestricted\n");
1247 opprg-odb-print-major (strO, OPC-NIL);
1248 FOUT;
1249

1250 void

162

1251 fddimacmultterminate ()
1252
1253 /* Packets and ICI's *
1254 Packet* mac_frame-ptr;
1255 Packet* pduptr;
1256 Packet* pkptr;
1257 Packet* data.pkptr:
1258 Ici* ici-ptr:

1259 /* Packet Fields and Attributes */
1260 int req-pri, svcclass, req-tkclass;
1261 int framecontrol, srcaddr:
1262 int pk-len, pri-level;
1263 static
1264 int *da-ptr, destaddr[];

1265 /* Token - Related */
1266 int tkusable. resstation. tk_class;
1267 int current_tk_class;
1268 double accum-sync;

1269 /* Timer - Related */
1270 double tx-time. timerremaining, accumbandwidth;
1271 double thtvalue:

1272 /* Miscellaneous */
1273 int i;
1274 int spawn-station. phyarrival;
1275 char errorstring [512];
1276 int num_frames_sent, numbits.sent:

1277 /* 26DEC93: loop management variables, used in RCV_TK */
1278 /* and ENCAP states. -Nix */
1279 int NUMPRIOS;
1280 int punt:
1281 int q-check;

1282 /* 08FEB94: case management variables, used in FRREPEAT. -Nix */
1283 int for-me;
1284 int countaddees;

1285 /* 08MAR94: "field holding" variables, used in FRREPEAT. -Nix */
1286 Packet* info-ptr:

1287 FIN (fddimacmultterminate ())
1288 FOUT:
1289

1290 Compcode
1291 fddimac_mult_init (prstatepptr)

163

1292 fddimac_mult-state **prstate-pptr:
1293
1294 static VosTCmObtype obtype - OPCNIL;

1295 FIN (fddi.macmult_init (prstate-pptr))

1296 if (obtype - OPCNIL)
1297
1298 if (VosCatmemRegister ("proc state vars (fddimacmult)'. sizeof
1299 (fdd1_mac_mult_state), VosNop. &obtype) - VOSCFAILURE)
1300 FRET (OPCCOMPCOOE_FAILURE)
1301

1302 if ((*pr-statepptr - (fddlimacmult-state*) Vos_CatmemnAlloc
1303 (obtype. 1)) - OPC_NIL)
1304 FRET (OPCCOMPCODE_FAILURE)
1305 else
1306 {
1307 (*prstate_pptr)->current_block - 20;
1308 FRET (OPCCOMPCODESUCCESS)
1309
1310

1311 /** The procedures defined in this section serve */
1312 / to simplify the code in the main body of the **/
1313 /** process model by providing primitives for timer **
1314 /** manipulation.. **/

1315 fdditimer-disable (tlmer-ptr)
1316 FddiT_Timer* timer-ptr:
1317
1318 /* if the timer is already disabled, do nothing */
1319 if (timerptr->enabled)
1320 {
1321 /* disable the timer */
1322 timerptr->enabled - 0:

1323 /* reassign the accumulated time so far */

1324 timerptr->accum - opsimtime () timer-ptr->start_time:
1325
1326

1327 fdditimer-enable (timer-ptr)
1328 FddlTTTimer* tImer-ptr:
1329
1330 /* if the timer is already enabled, simply return *I
1331 if (!timerptr->enabled)
1332
1333 /* reenable the timer */
1334 timer-ptr->enabled - 1:

164

1335 /* set the start time to the current time */
1336 /* less the accumulated time so far */
1337 timer-ptr->start-time - op-sim-time () timerptr->accum:
1338
1339

1340 fdditimerexpired (timerptr)
1341 FddiTTimer* timer-ptr;
1342
1343 if (fdditimerremaining (timer-ptr) <- 0.0)
1344 return 1;
1345 else return 0;
1346

1347 double
1348 fddi-timerremainlng (tlmerptr)
1349 FddiTTimer* timer-ptr:
1350
1351 /* if the timer is enabled, update the accumulated time */
1352 if (timer-ptr->enabled)
1353
1354 timerptr->accum - op-simtime () timer-ptr->start_time;
1355

1356 /* return the timer remaining before expiration */
1357 /* a non-positive value indicates an expired timer */
1358 return (timerptr->targetaccum - timerptr->accum);
1359

1360 double
1361 fdditimervalue (timer-ptr)
136 FddiTTimer* tlmerptr:
1363 {
1364 /* if the timer is enabled, update the accumulated time */
1365 if (timerptr->enabled)
1366
1367 timer-ptr->accum - opsim_time () - timer-ptr->start_time:
1368
1369 return (timerptr->accum):
1370

1371 fdditimerset-value (timerptr, value)
1372 FddiTTimer* timer-ptr:
1373 double value;
1374
1375 timer-ptr->accum - value:
1376

1377 fdditimercopy (fromtimer-ptr, totimer-ptr)

165

1378 FddiTTimer* fromtimerptr;
1379 FddiTTilmer* to_timer.ptr;
1380 {
1381 VosCopyMemory (fromtlmerptr. totimerptr. sizeof
1382 (FddiTTimer));
1383

1384 fddi-timerset (timerptr, duration)
1385 FddiT_Timer* timerptr;
1386 1
1387 /* clear out accumulated time */
1388 timer-ptr->accum - 0.0:

1389 /* assign the timer duration */
1390 timerptr->target_accum - duration:

1391 /* assign the current time */
1392 timer-ptr->start_time - op-sim.tlme ():

1393 /* enable the timer */
1394 timer-ptr->enabled - 1:
1395

1396 FddIT_Timer*
1397 fdditimercreate ()
1398
1399 FddiTTimer* timer_ptr;

1400 /* allocate memory for a timer structure *1
1401 timerptr - (FddilT_Timer*) malloc (sizeof (FddiT_Timer)):

1402 /* initialize the timer in the disabled mode */
1403 fddi-timerinit (timer-ptr);

1404 /* return the timer's address */
1405 return (timer-ptr):
1406

1407 fddi timerinit (timerptr)
1408 FddiT_Timer* timerptr;
1409 1
1410 /* the timer is initially disabled */
1411 timer-ptr->enabled - 0;

1412 /* the accumulated time is zero */
1413 timer-ptr->accum - 0.0;

1414 /* the target accumulated time is infinite */
1415 timer-ptr->target-accum - VOSDOUBLEINFINITY;

166

" LmlI

1416 /* the start time is now */
1417 timer-ptr->starttime - op-sim.time ():
1418

1419 fddi_stationregister (address, objid)
1420 Objld objid:
1421 int address:
1422
1423 /* Fill an entry in the table which maps station */
1424 /* addresses to OPNET object ids */
1425 FIN (fddl_stationregister (address, objid))

1426 FddiAddressTable [address] - objid:

1427 /* Keep track of total number of stations on the ring */
1428 Fddi_Num_Stations4-4;

1429 FOUT
1430

1431 fddi_tkregister ()
1432 {
1433 /* Register the station's intent to use the token. */
1434 /* This should be done whenever an unregistered */

1435 /* station obtains new data to transmit. */
1436 FIN (fddi_tkregsister ())

1437 /* increase the number of registered stations '/
1438 Fddi_Num_Registered++:

1439 /* if the token is currently blocked, unblock it */
1440 if (FddiTkBlocked && FddiTkAccelerate)
141 4
1442 fdditkunblock (),
1443

1444 FOUT
1445

1446 fddi_tk-deregister ()
1447
1448 /* Cancel the station's intent to use the token. */
1449 /* This should be done whenever a registered */
1450 /* station exhausts its transmittable data. */
1451 FIN (fdditk-deregsister ())

1452 /* decrease the number of registered stations */
1453 FddiNumRegistered--:

1454 FOUT

167

1455

1456 fdditkIndicate_nodata (token, address. delay)
1457 Packet* token:
1458 int address;
1459 double delay:
1460
1461 FIN (fdditkindicatenodata (token, address, delay))

1462 /* The calling station is indicating that it has captured */
1463 /* the token, but has no data to send. If no other stations *1
1464 /* have data to send either, the token may be blocked to gain */
1465 /* simulation efficiency. */
1466 if (Fddi_NumRegistered - 0 && Fddi_TkAccelerate)
1467 (
1468 fdditkblock (token, address):
1469
1470 else(
1471 /* If the token cannot be blocked, send it into the ring. */
1472 oppksenddelayed (token. FDDIPHY_STRMOUT,
1473 delay + FddiPropDelay);
1474
1475 FOUT
1476

1477 fddi-tk-block (token, address)
1478 Packet* token;
1479 int address;
1480 {
1481 int

1482 FIN (fddi tkblock (token, address))

1483 /* Record the address of the blocking station and blocking time. */
1484 FddiTkBlockBasejTime - op-sim..time ();
1485 Fddi_Tk_BlockBase-Station - address;

1486 if (tktrace-on -- OPCTRUE)
1487
1488 sprintf (strO. *Blocking Token: station (Ud). time (3.9f)".
1489 FddiTkBlockBaseStation. FddiTkBlockBase.Time);
1490 opprg-odbprint-major (strO. OPCNIL):
1491

1492 /* Indicate that the token is blocked */
1493 FddiTkBlocked - 1:

1494 /* discard the token packet; another one will be */
1495 /* created when the token is unblocked. */
1496 op-pk-destroy (token);

168

1497 /* Cancel TRT timers at all MAC interfaces; otherwise these */
1498 /* timers may continue to expitr during the idle period, */
1499 /* generating unnecessary events. */
1500 if (tktraceon -- OPCTRUE)
1501
1502 sprintf (strO, *Canceling timers for (%d) stations'.
1503 FddiNumStations);
1504 opprgodb-printmajor (strO, OPCNIL);
1505

1506 for (i - 0; 1 < FddlNumStations: i-++)
1507 {
1508 /* Retain the time at which the TRT would have expired; */
1509 /* this is used for calculations when the token is */
1510 /* reinjected into the ring. */
1511 FddiTrt-ExpTime [i] - op-evtime (Fddi_Trt_Handle [i]);

1512 /* Cancel the TRT expiration event. */
1513 op-ev-cancel (Fddi_Trt_Handle [i]);
1514
1515 FOUT
1516

1517 fdditkunblock ()
1518
1519 double elapsedtime, first-tkrx, last_tk_rx;
1520 double tk-laptime, next_time, current_time;
1521 double dbl_numhops, num_tkrx. floor (). ceil (:
1522 int I, num-hops, nextstation;

1523 FIN (fdditkunblock ())

1524 /* reset the blocking indicator */
1525 FddiTkBlocked = 0;

1526 /* Get the current time, used for mnny calculations below */
1527 currenttime - op-simtime ();

1528 if (tktraceon -- OPCTRUE)
1529 {
1530 sprintf (strO. "Unblocking token for ring (%d)", ring-id);
1531 op-prg-odbprintmajor (strO, OPCNIL);
1532

1533 /* For all stations on the ring, adjust TRT timer and LateCt flag. */
1534 for (i = 0; i < FddiNumStations; i++)
1535
1536 if (tktraceon -- OPCTRUE)
1537
1538 sprintf (strO, "adjusting state of station (%d)", i);

169

1539 opprgodb-print-minor (''. strO. OPC_NIL);
1540
1541 /* Calculate number of hops separating station i from block base
1542 station. *I
1543 /* In special case where i is the base station, the token must run a
1544 full */
1545 /* lap before returning. */
1546 if (i !- FddiTkBlockBaseStation)
1547 {
1548 num-hops - (i - FddiTkBlockBaseStation) %
1549 Fddi _NumStations;
1550 if (numhops < 0)
1551 num-hops = FddiNum_Stations + numhops;
1552 1
1553 else numhops = Fddi_Num_Stations;

1554 /* Calculate first time at which token would have been received by
1555 station i. */
1556 /* Note that initial release of token from base station takes a
1557 different */
1558 /* amount of time than repeating of token by other stations. Thus, the
1559 first */
1560 /* hop is assumed, and the base time is augmented by the time required
1561 to */
1562 /* complete it. */
1563 firsttkrx - FddiTkBlockBaseTime + FODICTOKENTX-TIME +
1564 Fddi_PropDelay + (num-hops - 1) * Fddi_Tk_Hop_Delay;

1565 if (tktraceon -- OPCTRUE)
1566
1567 sprintf (strO, 'station is (%d) hops from base', numhops);
1568 sprintf (strl, 'first receipt of token would be at (%.9f)'.
1569 fi rsttk.rx) ;
1570 opprgodbprint-minor (strO, strl. OPC_NIL);
1571

1572 /t Case 1: the token would not yet have been received by station i. */
1573 if (first_tkrx > currenttime)
1574 {
1575 /* Case la: the TRT at station i would not yet have expired. */
1576 if (FddiTrtExpTime [i] > currenttime)
1577
1578 /* LateCt remains at i original value; only the TRT needs */
1579 /* to be started again, .ith the same expiration time. */
1580 TRT_SET (i. FddiTrtExpTime [i])

1581 if (tk-tra,.e_on == OPCTRUE)
1582
1583 sprintf (strO, "Restoring TRT to previous exp. time
1584 (%.9f)'. FddiTrtExpTime Li]);

170

1585 op-prg-odbprint_minor ('Token would not be received
1586 and TRT not expired'. strO, OPC_NIL):
1587
1588
1589 /* Case Ib: the TRT at station i would have expired. *I
1590 else
1591
1592 /* LateCt would have been set: also the timer would have been
1593 rescheduled */
1594 /* for an entire TTRT at the time of expiration. */
1595 FddiLateCt [i] - 1;
1596 TRT_SET (i. (Fddl_T_Opr + Fddi_TrtExpTime [i]))

1597 if (tk-trace-on -- OPCTRUE)
1598
1599 sprintf (strO. 'Restoring TRT to proper exp. time
1600 (%.9f)', Fddi_TOpr + Fddi_TrtExpTime [i));
1601 op-prg-odb-print.minor (*Token would not be received
1602 and TRT would have expired'. strO, OPC_NIL);
1603
1604
1605

1606 /* Case 2: the token would have been received (perhaps more than once).
1607
1608 else
1609 {
1610 /* Calculate the number of times the token would have been received */
1611 /* not including the first receipt. */
1612 tklaptime - Fddi _Tk-HopDelay * FddiNumStations;
1613 num-tkrx - floor ((current-time first-tk-rx) /
1614 tk-lap-time);

1615 /* Calculate the latest time at which the token would have been
1616 received. */
1617 last tk rx - first-tkrx + (numtkrx * tklap.time):

1618 /* Clear LateCt and schedule timer to expire at last receipt of token
1619
1620 /* plus one full TTRT. */
1621 FddiLateCt [i] - 0;
1622 TRTSET (i, (last_tkrx + FddiTOpr))
1623 if (tktraceon == OPCTRUE)
1624 {
1625 sprintf (strO, 'token received (%g) times, last receipt
1626 at (%.9f)', numntk-rx + 1.0. last_tkrx);
1627 sprintf (strl. 'Restoring TRT to proper exp. time
1628 (%.9f)'. lasttkrx + FddiTOpr);
1629 op-prg-odb-print-minor ("Token would have been received;
1630 LateCt is cleared', strI, strO, OPCNIL);

171

1631
1632
1633 }

1634 /* compute the time since the token was blocked */
1635 elapsed-time - currenttime - Fddi_Tk_BlockBase_Time;

1636 /* compute the number of hops completed on the ring. For the first hop
1637
1638 /* the token is transmitted directly, not repeated. For all remaining
1639
1640 /* hops. the delay is the station latency plus the propagation delay.
1641
1642 /* Thus, the first hop is assumed, and the remaining time for
1643 additional*/
1644 /* hops is computed beginning at the time where the token enters the */
1645 /* base station's downstream neighbor */
1646 dblnumhops - 1.0 + (elapsed_time - FDDIC_TOKENTXTIME -

1647 Fddi_PropDelay) / Fddi_TkHopDelay;

1648 /* If the token was unblocked in less time than it would have taken to
1649
1650 /* be fully transmitted by the base station, dblnumhops will be */
1651 /* negative. However, 1 full hop would still be required before the */
1652 /* token could be used, since the station had already committed to */
1653 /* issuing the token. Thus, the actual of number of hops should never */
1654 /* be less than I. If it is, round it to 1. */
1655 if (dbl_num_hops < 1.0)
1656 dblnumhops - 1.0:
1657 else
1658 {
1659 /* In all other cases, round the number of hops up to the nearest */
1660 /* integer value. If already an integer, then leave as is. */
1661 dblnum-hops - ceil (dbl_numhops);
1662

1663 /* Obtain an integer equivalent of dbl_num._hops. */
1664 numhops - dbl_numhops;

1665 /* Based on the number of hops and the base station, compute the */
1666 /* next station where the token will appear. */
1667 nextstation - (num.._hops + FddiTk_Block_Base_Station) %
1668 Fddi_Num_Stations:

1669 /* Compute the time at which the token will appear there. */
1670 /* Again, assume the first hop occurred, and measure time */
1671 /* from there forward. */
1672 nexttime - FddiTkBlockBaseTime + (FDDICTOKEN_TX_TIME +
1673 FddiPropDelay) + (dbl_numhops 1.0) * FddiTkHopDelay;

172

1674 if (tk-trace_on -- OPC_TRUE)
1675 {
1676 sprintf (strO, "Re-introducing token at station (%d), at time
1677 (%.9f)o. next_station. next-time):
1678 op-prg-odb-prlntminor (strO. OPCNIL):
1679

1680 /* reinject the token at that station */
1681 fddi-tk_inject (nextstation. next-time):

1682 FOUT
1683

1684 fddi_tk_inject (address, arv-time)
1685 int address;
1686 double arvtime;
1687 {
1688 /* Re-insert the token into the ring after an idle period. */
1689 FIN (fdditk-inject (address. arv-time))

1690 /* The token is recreated and reinserted onto the ring */
1691 /* at the specified station which is not necesssarily the */
1692 /* station now requesting the token. */
1693 /* The station which will r nsert the token is */
1694 /* asked to do so by means .. a remote interrupt. */
1695 op-intrpt-schedule_remote (arvtime. FDDIC_TK_INJECT,
1696 FddiAddressTable [address]);

1697 FOUT
1698

1699 fddiloadframeattrs (destaddr-ptr, svcclass_ptr, pri_level_ptr)
1700 int *dest-addr-ptr, *svc-class-ptr, *pri-level-ptr;
1701 {
1702 int NUMPRIOS. i; /* 26JAN94 */
1703 Packet *pkptr;

1704 FIN (fddiloadframeattrs (dest_addr-ptr. svc_class-ptr.
1705 pri level -ptr))

1706 /* remove next packet in queue */
1707 /* 27DEC94: loop structure superimposed to handle a bank of subqueues.
1708
1709 /* Extract the packet with the highest priority, that is, the packet
1710
1711 /* at the head of the highest-numbered subqueue containing packets.
1712
1713 /* Note that the C language vector numbering convention numbers the
1714
1715 /* subqueues from 0 to 7. while FDDI convention is to number the */

173

1716 /* corresponding asynchronous priorities from 1 to B. This Is *I
1717 /* reconciled in the statistical outputs available in the Analysis */
1718 /* Editor, where labels are assigned accordingly. Also note that */

1719 /* synchronous traffic is assigned priority 8 as an artifice to allow
1720
1721 /* routing through a separate subqueue. by which statistics may be */

1722 /* gathered for traffic by class and by priority. -Nix */
1723 NUMPRIOS - 9;
1724 for (I = NUM_PRIOS - 1; i > -1; i--)
1725
1726 if (opsubqstat (i. OPCOSTATPKSIZE) > 0.0)
1727
1728 pkptr - opsubqpkremove (i. OPC_OPOS_HEAD);
1729 break;
1130
1731
1732 /* extract the fields of interest ./
1733 op_pk_nfdget (pkptr, "destaddre. dest_addrptr):
1734 op-pk nfd-get (pkptr. "svcclass'. svcclass-ptr);

1735 /* only read priority level if frame is asynchronous */

1736 if (*svc-class-ptr - FDDISVCASYNC)
1737 op_pk_nfdget (pkptr, "prio. pri _level_ptr);

1738 /* replace the packet on the proper subqueue */
1739 opsubq_pk_insert (i. pkptr. OPCOPOS_HEAD);
1740 FOUT
1741

174

APPENDIX F. SOURCE "C" CODE:

"fddi.gen_mult.pr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET's text editors.

1 /* Process model C form file: fddigen-mult.pr.c */
2 /* Portions of this file Copyright (C) MIL 3, Inc. 1992 */

3 /* OPNET system definitions */
4 #include <opnet.h>
5 #include "fddi-genmult.pr.h"
6 FSMEXT_DECS

7 /* Header block */
8 #define MACLAYEROUT_STREAM 0

9 /* define possible service classes for frames */
10 #define FDDISVCASYNC 0
11 #define FDDISVCSYNC 1

12 /* define token classes */
13 #define FDDIOTKNONRESTRICTED 0
14 #define FDDI_TK_RESTRICTED 1

15 /* 07FEB94: define the number of stations */
16 #define NUM_STATIONS so

17 /* a global counting variable */
18 /* nt genARRIVAL = 0; */

19 /* State variable definitions */
20 typedef struct
21
22 FSM_SYS_STATE
23 Distribution* sv_inter_dist-ptr;
24 Distribution* svlendistptr;
25 Distribution* sv_destdist_ptr:
26 Distribution* svpkt-priority-ptr;
27 Objid svmacobjid;

175

28 Obj id s v.my-id;
29 int sv-low-dest-addr:
30 int sv_hlgh..dest-addr;
31 int sv-statlon-.addr;
32 int sv_low..pkt...prlorlty;
33 int sv_hlgh..pkt..prlorlty;
34 double sv-arrlval-..rate;
35 double sv-meart..pk.len:
36 double sv,..async...mix;
37 Ici* svjiiac_iciptr;
38 Distribution* sv-.num-addees-dlst...ptr;
39 int sv_num..addees;
40 int sv_min...num-..addees;
41 int sv-max-num-addees;
42 int sv...dest-addrcNUlt.STArIONS+1J:
43) fddi~gen~mult_state:

44 #define pr-state-.ptr ((fddi-gen_mult-state*)
45 SimIModStatePtr)
46 #define inter-dist-ptr pr...state~ptr->sv-inter-dist-.ptr
41 #define len-dlst..ptr pr...state...ptr->sv-len-dist...ptr
48 #define dest-dlst~ptr pr~state...ptr->sv-dest_dist...ptr

49 ~ ~ -#dfn k...roiyptr pr~state...ptr->sv...pkt...priority~.ptr

50 #define mac_objid pr...state..ptr->sv..mac...objid

52 #define low~dest~addr pr...state...ptr->sv-low_dest~addr
53 #tdefine high...dest_addr pr~state..ptr->sv~hlgh..dest..addr
54 #define station_addr pr~..state...ptr->sv...station_addr
55 #define low-..pkt..priority pr..state..ptr->sv-.low..pkt...prlorlty
56 #define high...pkt...priority pr...state...ptr->sv...high...pkt...prlorlty
57 #define arrival-_rate pr...state..ptr->sv..arrival _rate
58 #define mean-pk_ ten pr...state...ptr->sv...mean...pk_ len
59 #define async....rix pr..state..ptr->sv..async_..mix
60 #define mac-iciptr pr..state..ptr->sv-mac-iciptr
61 #define num-addees-dlst...ptr pr~state..ptr->sv num_addees...dlst..ptr
62 #define num-addees pr~state...ptr->sv_num_addees
63 #define minnum-addees pr...state~..ptr->sv_min_nuM_addees
64 #define max-num-addees pr~state..ptr->sv max_num_addees
65 #define dest...addr pr..state...ptr->sv-dest_addr

66 /* Process model interrupt handling procedure ~

67 void
68 fddi...gen-mult (
69
70 Packet *pkptr;
71 int pklen;
72 mnt *da~ptr;

73 int i. restricted:

176

74 int pktprio;

5 int nix;

76 FSM_ENTER (fddigen-mult)

77 FSMBLOCKSWITCH
78
79 /* --- *

80 /** state (INIT) enter executives **/
81 FSM_STATEENTER_UNFORCED (0, stateOenterexec, "INIT')
82
83 /* determine id of own processor to use in finding attrs *1
84 my-id - opid-self ();

85 /* 07FEB94: determine the upper and lower limits for multiple *I
86 /* addressing from this station. -Nix */
87 op-ima-obj-attrget (my_id, *min num addees'. &min_num_addees);
88 opima-objattrget (myid, *max num addees'. &maxnum_addees):

89 /* 07FEB94: set up a distribution for the number of stations *1
90 /* receive this packet. -Nix *1
91 numaddees_distptr - op_distload ('uniform_int',
92 mmn_num_addees. maxnumaddees);

93 /* determine address range for uniform desination assignment */
94 op-ima-objattrget (my-id, 'low dest address".
95 &lowdest.addr);
96 opima-obj-attrget (myid, "high dest address',
97 &highdestaddr);

98 /* determine object id of connected 'mac' layer process *1
99 macobjid - op-topoassoc (myId. OPC_TOPO_ASSOC_OUT.

100 OPC_OBJMTYPE_MODULE. MACLAYER_OUT_STREAM);

101 /* determine the address assigned to it */
102 /* which is also the address of this station */
103 op-ima-obj-attrget (mac_objid, "station_address",
104 &stationaddr):

105 /* set up a distribution for generation of addresses */
106 d~stdist-ptr - opdist-load ('uniformint', lowdestaddr,
107 high-destaddr);

108 /* added 26DEC93 */
109 /* determine priority range for uniform traffic generation */
110 op-ima-obj-attrget (myid, "high pkt priority',
111 &hi gh-pkt-pri ori ty):
112 op-ima-obj-attrget (my-id, 'low pkt priority".
113 &lowpkt-priority);

177

114 /* set up a distribution for generation of priorities */
115 pkt-priority-ptr - op-dist-load ('uniformmnt".
116 low pktpriornty. high pktpriornty);

117 /* above added 26DEC93 */

118 /* also determine the arrival rate for packet generation */
119 opilma-objattrget (my_id, "arrival rate". &arrival_rate);

120 /* determine the mix of asynchronous and synchronous */
121 /* traffic. This is expressed as the proportion of */
122 /* asynchronous traffic. i.e a value of 1.0 indicates */

123 /* that all the produced traffic shall be asynchronous. */
124 oplimaobjattrget (my_Id. "async_mix'. &async_mix);

125 /* set up a distribution for arrival generations */
126 if (arrivalrate !- 0.0)
127 {
128 /* arrivals are exponentially distributed, with given mean */
129 inter dist-ptr - op-dist.load ('constant', 1.0 /
130 arrival-rate, 0.0);

131 /* determine the distribution for packet size */
132 opimaobj_attrget (my-td. *mean pk length'. &mean-pk-len);

133 /* set up corresponding distribution */
134 lendistptr - op_distload ('constant', mean-pk-len. 0.0);
135
136 /* designate the time of first arrival *1
137 fddigen-schedule ();

138 /* set up an interface control information (ICI) structure */
139 /* to communicate parameters to the mac layer process */
140 /* (it is more efficient to set one up now and keep it */
141 /* as a state variable than to allocate one on each packet xfer) */
142 mac-iciptr - op-ici-create ('fddi-mac-req');
143
144

145 ** blocking after enter executives of unforced state. **I
146 FSMEXIT (1.fddigen-mult)

147 /** state (INIT) exit executives **/
148 FSM_STATEEXITUNFORCED (0, stateOexit_exec, "INIT')
149
150

151 /** state (INIT) transition processing */
152 FSM_TRANSITFORCE (1. statelenterexec, ;)
153 /* - ---*

178

154 I* state (ARRIVAL) enter executives *
155 FSM_STATEENTERUNFORCED (1. statel_enterexec. 'ARRIVAL")
156
157 /* determine the length of the packet to be generated */
158 pklen - op-dlst-outcome (len_dist-ptr);

159 /* 07FEB94: re-initialize the destination address array */
160 /* to zeros. -Nix
161 for (i - 0; i < NUM_STATIONS+1; i++)
162
163 destaddr[i] - 0:
164

165 /* determine the destination */
166 /* don't allow this station's address as a possible outcome */
167 /* gen-packet: */
168 /* destaddr - op_distoutcome (dest_dist.ptr): */
169 /* if (dest-addr !- -1 && destaddr - stationaddr) */
170 /* goto gen-packet; */

171 /* 07FEB94: determine the destinations. -Nix */

172 /* Determine the number of stations to receive this packet */
173 numaddees - op-dist-outcome (num_addees.dist.ptr);

174 /* Find these stations, using num_addees as a counter. -Nix */
175 for (i - numaddees: I > 0; i--)
176 {
177 gen-packet:
178 nix - op_distoutcome (dest-dist-ptr);
179 if (dest-addr[nix] -- 1 !I nix -- stationmaddr)
180
181 goto gen.packet:
182
183 destaddr[nix] - 1;
184

185 /* 05MAR94: because the op-pk-nfd.get() command in FR_REPEAT */
186 /* overwrites the first field with the array address, an */*/
187 /* offset needs to be applied so that the dest_array[O] */
188 /* contents aren't lost; that is, one field more than the */*/
189 /* number of stations is included to allow a one-step shift */
190 /* that will preserve the address array. In fddimac, all */
191 /* references to destaddr must allow for this shift. -Nix */
192 for (i-NUMSTATIONS: 0>0: i--)
193 destaddrEi] - destaddr[i-1];
194

195 /* 26DEC94 & 29JAN94: determine its priority */
196 pktprio - op_dist-outcome (pkt-priority-ptr);

179

197 /* create a packet to send to mac */
198 pkptr - op-pk-createfmt ('fddi_llcfro):

199 /* assign its overall size. */
200 op.pk-total_sizeset (pkptr, pklen);

201 /* assign the time of creation */
202 op-pknfd_set (pkptr, *crtime", op-sim_time ());

203 /* place the destination address into the ICI *1
204 /* (the protocoltype field will default) */

205 /* 15MAR94: note that destaddr now serves as a */
206 /* pointer to an array in memory, as it is the */
207 /* name of an array of what will be Os and Is. -Nix */
208 op-ici _attr_set (mac-iciptr, 'destaddr', dest.addr):

209 /* assign the priority, and requested token class */
210 /* also assign the service class */

211 /* 29JAN94: the fddillcfr format is modified */
212 /* to include a 'pri" field. -Nix */

213 if (op_dist_uniform (1.0) <- asyncmix)
214
215 op.pk-nfdset (pkptr, "pri', pkt.prio):/* 29JAN94 */
216 op.ici.attrset (mac-iciptr, "svcclass', FDDISVCASYNC);
217 op-iciattrset (mac-iciptr. "pri*. pkt.prio); /* 29JAN94
218 */
219
220 else(
221 oppknfdset (pkptr, "pri'. 8);/* 29JAN94 */
222 opici_attrset (mac-iciptr, *svc-class', FDDI_SVC_SYNC);
223 op.ici_attrset (mac-iciptr. "pri*. 8); /* 29JAN94 */
224

225 /* Request only nonrestricted tokens after transmission */
226 op-ici _attr_set (mac-iciptr, "tkclass*,
227 FDDITKNONRESTRICTED);

228 /* send the packet coupled with the ICI */
229 op-ici_install (maciciptr);
230 up-pk-send (pkptr, MACLAYEROUT_STREAM):

231 /* ** */
232 /* 17MAR94: count and report the running total number */
233 /* of packets generated. -Nix
234 /******************************

235 /* genARRIVAL -H-; */
236 /* printf('Packets generated: Wd\n', genARRIVAL); */

180

237 /* schedule the next arrival *

238 fddi...gen_schedule ;

239 /******************************

240 1* 18FEB94: print out the address, and the contents. *
241 /* for (i-0; i(NUMSTATIONS+1: i++) */
242 /* printfUARRIVAL: Zd. address: %X: contents: Wdn".
243 /* i. &(dest-addr~i])) dest...addr~iJ); *
244 f* ************************** 1
245

246 * blocking after enter executives of unforced state. ~
247 FSM_EXIT (3,fddi...gen_mult)

248 /*state (ARRIVAL) exit executives ~
249 FSMSTATEEXIT_UNFORCED (1, statel-exit_exec. "ARRIVALO)
250
251

252 /*state (ARRIVAL) transition processing ~
253 FSM_TRANSIT_FORCE (1. statel-enter-exec. :
254 /*--*
255

256 FSM_EXIT (O~fddi~gen..mult)
257

258 void
259 fddi-.gen...mult_svar (prs..ptr.var..name.var...p.ptr)
260 fddi...gen-mult_state *prs-.ptr;
261 char *var name. **var...p ptr:
262

263 FIN (fddi-..gen...mult..svar (prs...ptr))

264 *var~pptr - VOS_..NIL:
265 if (Vos...String...Equal (einter_dist-ptr* , var_name)) *var-pptr
266 (char*) (&prs...ptr->sv..inter~dist..ptr);
267 if (VosStringEqual (olen..dist...ptr" , var_name)) *var~pptr
268 (char*) (&prs...ptr-)sv len-dist...ptr):
269 if (Vos_.String..Equal (Odest_dist...ptr" . var...name)) *var-pptr
270 (char*) (&prs...ptr->sv dest_dist...ptr);
271 if (Vos..String...Equal ("pkt-priority...ptr" . var_name)) *var-pptr
272 (char*) (&prs...ptr->sv...pkt...priority...ptr):
273 if (Vos..String...Equal (mmac...objid* , var-.name)) *var-pptr - (char*)
274 (&prs..ptr->sv_mac-objid);
275 if (Vos...String...Equal (*my..id* , var...name)) *var-pptr - (char*)
276 (&prs-rptr->sv...my..id):
277 if (Vos-String-.Equal ("low-dest-addr-? . var...name)) *var-pptr=
278 (char*) (&prs...ptr->sv-low-dest-addr);

181

279 if (VosString-Equal (*high-dest-addr" * var-name)) *var-pptr -
280 (char*) (&prs...ptr->sv..high_dest-addr);
281 if (VosString...Equal (astation-addr' , var-name)) *var-pptr
282 (char*) (&prs...ptr->sv-station-addr):
283 if (VosString...Equal ('1ow~.pkt..priority* * var_name)) *var~pptr =

284 (char*) (&prs...ptr->sv...low..pkt-.prlority);
285 if (Vos_String_.Equal ('hlgh~pkt...prlorlty' * var_name)) *var_p~ptr
286 - (char*) (&prs...ptr->sv high-..pkt...priorlty);
287 if (VosString-.Equal ("arrival-_rate" , var-name)) *var-pptr
288 (char*) (&prs-ptr->sv..arrival _rate):
289 if (Vos_StrlngEqual ('mean-pk-lef' . var...name)) *var-pptr =(char*)

290 (&prs-ptr->sv mean..pk-len);
291 if (Vos_String.-.Equal ("async_mix , var-name)) *var-p...ptr -(char*)

292 (&prs-ptr->sv..async-mix):
293 if (Vos_String...Equal ('mac~iciptr* var-name)) *var-pptr =(char*)

294 (&prs...ptr->sv-mac...iciptr);
295 if (Vos_StringEqual ("num...addees-dist~ptr' . var-name)) *var~pptr
296 (char*) (&prs...ptr->sv...num addees_dlst...ptr):
297 if (Vos_String...Equal ("num~addeesu , var_name)) *var_p-ptr - (char*)
298 (&prs...ptr->sv-num-addees):
299 if (VasString...Equal ('min-.num..addees' . var..name)) *var-pptr -
300 (char*) (&prs...ptr->sv-mm _num-addees);
301 if (Vos_String-E.qual ('max..num-addees' . var...name)) *var~pptr -

302 (char*) (&prs..ptr->sv...max-num-addees):
303 if (VosString-.Equal ('dest..addr' .var-name)) *var-_p..ptr -(char*)
304 (prs~ptr->sv_dest-addr):
305 FOUT;
306

307 void
308 fddi.gen-mult_diag C
309
310 Packet *pkptr:
311 mnt pklen:
312 mnt *da-ptr;

313 int i. restricted:
314 mnt pkt~prio:
315 mnt nix:

316 FIN (fddi..gen_mult-diag M)

317 FOUT:
318

319 void
320 fddi~gen_mult_terminate (
321
322 Packet *pkptr:
323 mnt pklen;

182

324 int *da-ptr;

325 int i, restricted;
326 int pkt-prio;
327 int nix;

328 FIN (fddi...gen-.mult_terminate M)

329 FOUT;
330

331 Campcode
332 fddi...gen..mult-init (pr..state-pptr)
333 fddi...gen-mult-state **pr-state_pptr;
334
335 static VosT_Cm...Obtype obtype - OPC_NIL:

336 FIN (fddi~gen...mult_init (pr-.state...pptr))

337 if (obtype -- GPC_NIL)
338
339 if (VosCatmem...Register ('proc state vars (fddi..gen..mult)*,
340 sizeof (fddi..gen-mult-state). Vos-.Nop, &obtype)1-
341 VOSC_FAILURE)
342 FRET (OPC_COMPCODE_FAILURE)
343

344 if ((*pr-state pptr - (fddi...gen-mult-state*) Vos_Catmem_Alloc
345 (obtype. 1)) -- OPCNIL)
346 FRET (OPC_COMPCODEFAILURE)
347 else
348
349 (*pr-state_pptr)->current..block - 0;
350 FRET (OPCCOMPCODESUCCESS)
351
352

353 /* static added 2DEC93. on advice from MIL 3. Inc. ~
354 static
355 fddi...gen-schedule (
356
357 double inter-time;

358 /* obtain an interarrival period according to the *
359 /* prescribed distribution */
360 inter-time - op-dlst-outcome (inter-dist...ptr);

361 /* schedule the arrival of next generated packet */
362 opjintrpt-.schedule_self (op-sim-time C)+ inter_time. 0):
363

183

APPENDIX G. SINK "C" CODE:

"fddi_sinkmultpr.c"

The line numbering in this appendix is used for reference within this thesis only, and

does not correspond with that seen in OPNET's text editors.

1 /* Process model C form file: fddi_sink-mult.pr.c */
2 /* Portions of this file Copyright (C) MIL 3. Inc. 1992 */

3 /* OPNET system definitions */
4 #include <opnet.h>
5 #include 'fddisinkmult.pr.h"
6 FSM_EXT_DECS

7 /* Header block */
8 /* Globals */
9 /* array format installed 20JAN94; positions 0-7 represent the asynch

10 priority levels. PRIORITIES + 1 */
11 /* represents synch traffic, and grand totals are as given in the
12 original. *I
13

14 #define PRIORITIES 8 /* 20JAN94 *I
15 double fddi_sinkaccum_delay - 0.0;
16 double fddi_sinkaccum_delay_a[PRIORITIES + 1) - {0.0. 0.0. 0.0,
17 0.0. 0.0. 0.0, 0.0. 0.0. 0.0):
18 int fddi_sink-total-pkts - 0;
19 int fddisink-total-pkts-a[PRIORITIES + 1] - (0, 0. 0, 0. 0. 0, 0.
20 0. 0):
21 double fddisinktotalbits - 0.0;
22 double fddisinktotalbits-a[PRIORITIES + 1] - (0.0. 0.0. 0.0,
23 0.0, 0.0, 0.0, 0.0, 0.0. 0.0):
24 double fddisinkpeak-delay - 0.0;
25 double fddisinkpeak-delay-a[PRIORITIES + 2) - (0.0. 0.0, 0.0,
26 0.0. 0.0, 0.0, 0.0. 0.0, 0.0);
27 int fddisinkscalarwrite - 0;
28 int pri-set - 20:1* 20JAN94 */

29 /* Externally defined globals. *I
30 extern double fddi_t_opr [];

184

31 /* Attributes fromEnvironment file. *
32 double Offered_.Load;/* 12JAN94 */
33 double Asynch-.Offered-.Load; /* 12JAN94 *

34 /* transition expressions */
35 #define ENDOFSIN op-intrpt...type() - OPCINTRPT_ENDSIM

36 /* State variable definitions *
37 typedef struct
38
39 FSM-SYS_.STATE
40 Gshandle sv...thru..gshandle;
41 Gshandle svj1~delay..gshandle;
42 Gshandle sv-ete_delay..gshandle;
43 Gshandle sv...thru~gshandle...a[10J;
44 Gshandle svMjelay...gshandle..a(1OJ;
45 Gshandle sv...ete-delay.~gshandle..a[9J;
46) fddi-.sink-.mult...state:

47 #define pr-.state...ptr ((fddi~sink_ýmult..state*)
48 SimIModState-.Ptr)
49 #define thru..gshandle pr...state-..ptr->sv~thru..gshandle
50 #define m..Aelay...gshandle pr...state...ptr->sv...m.delay~gshandle
51 #define ete.,.delay..gshandle pr...state..ptr->sv...ete..delay~gshandle
52 #define thru...gshandle...a pr-state...ptr->sv...thru..gshandle~a
53 #define m..delay..gshandle...a pr...state~ptr->sv...rn~delay..gshandle_a
54 #define ete...delay..gshandle..~a pr...state...ptr->sv...ete..delay..gshandle_a

55 /* Process model interrupt handling procedure *

56 void
57 fddi-sink-mult (
58
59 double delay. creat...time;
60 Packet* pkptr;
61 int src..addr. my-..addr;
62 Ici* from-mac-ici..ptr;
63 double fddi...sink..ttrt;

64 FSMENTER (fddi _sink-mult)

65 FSMBLOCKSWITCH1
66
67 /*--*
68 I~state (DISCARD) enter executives **
69 FSM_STATEENTER...UNFORCED (0. stateO-enter-exec. "DISCARD*)
70 1
71 /* get the packet and the interface control info *

72 pkptr - op...pk.get (op...intrpt...strm M);
73 from-mac~ici-..ptr - op...intrpt...ici)

185

74 /* 20JAN94: get the packet's priority level, which *I

75 /* will be used to index arrays of thruput and delay */

76 /* computations. */
77 /* prtset - op_pk_priorityget (pkptr); doesn't work here */

78 oppknfdget (pkptr. "pri, &pri-set);I* 29JAN94 */

79 /* add in its size */
80 fddisink_total-bits +- op-pk.total-size-get (pkptr);
81 fddi_sinktotal_bits_a[pritset] +- op-pktotal_sizeget
82 (pkptr); /* 20JAN94 */

83 /* determine the time of creation of the packet */

84 op_pk_nfd-get (pkptr. *cr-timeo, &creat_time);

85 /* accumulate delays */
86 delay - op-sim-time () creattitme;
87 fddi_sinkaccumdelay - delay:
88 fddi_sink-accumdelay_a[prlset] +- delay; /* 20JAN94 */

89 /* keep track of peak delay value */
90 If (delay > fddl_sinkpeak-delay)
91 fddi_sinkpeak-delay - delay:

92 /* 20JAN94: keep track by priority levels as well 23JAN94 */

93 if (delay > fddl_sinkpeak-delayaEprlset])
94 fddi_sinkpeakdelay_a[pritset] - delay:

96 /* printf('DISCARD: pri-set is %d\n. prilset); */
97 / * ***********************

98 /* destroy the packet */
99 oppk_destroy (pkptr):

100 /* 03FEB94: To convert this to the *fddisinklink" */

101 /* model, deactivate the 'destroy' code, and activate *1

12 /* the following 'enqueue' code. This is a first */
103 /* step toward developing a LAN bridging structure. */
104 /* -Nix *1
105 /* opsubq-pk-insert (pri-set, pkptr. OPC_OPOS_TAIL); */

106 /* increment packet counter; 20JAN94 */

107 fddi -sinktotal.pkts++;
108 fddi-sinktotal-pkts-a[pri-set]++;

109 /* if a multiple of 25 packets is reached, update stats *1
110 /* 03FEB94: [0]->[7J represent asynch priorities 1->8, */
111 I* respectively; [8) represents synchronous traffic, */
112 /* and [9) represents overall asynchronous traffic.-Nix */
113 if (fddi_sinktotalpkts % 1 - 0)

186

114t
115 op...stat~global _write (thru...gshandle. fddi..sink-.total-.bitsI
116 op...sim...time 0);
117 op-stat.,global~write (thru...gshandle-a(OJ,
118 fddi...sink...total..bits...a(OJ / op...sini..timeo):
119 op-.stat..global..write (thru~gshandle...a[1J.
120 fddi_sink_total...bits...a~lJ / op-sin-tlmeo):
121 op-stat-.global...wrlte (thru...gshandle..a(2J.
122 fddi-.sink..total_bits...a[2J / op-.sini..timeo);
123 op...stat-global-write
124 (thru-.gshandle...a[3J.fddi..sink...total bits_a[3)
125 op...sin-timeo);
126 op..stat...global...write (thru...gshandle_a[4J.
127 fddl...sink-.total...bits...a[43 / op...sim~t*lleO);
128 op-..stat-global~write (thru...gshandle_a[Sb,,
129 fddi-sink...total...bits..a[5J / op...sini..timeo):
130 op-.stat...global__.wrlte (thru...gshandle~a[6J.
131 fddi..sink..total...bits...a[6J / op...sin-timeo);
132 op-..stat...global-write (thru...gshandle~a[7].
133 fddi~sink...total~bits...aE7J / op...sim-..timeo):
134 op...stat...global...write (thru...gshandle...a[BJ,
135 fddi..sink..total...bits..a[B] / op...sim..timeo);

136 /* 30JAN94: gather all asynch stats into one overall figure *
137 op...stat-.globab..write (thru~gshandle...a[9J.
138 (fddi-sink-total-bits...afOJ + f'ddi..sink_total _bits a(1) +
139 fddi-.sink-total...bits...a[2) + fddi-.sink-total _bits...a[3) +
140 fddi-.sink-total-.bits-..a[4) + fddi-sink-total _bits...a[5J +
141 fddi-.sink.*,total...bits-.aE6J + fddi _sink-total _bits-.a[7J)
142 op...sini..timeo);
143
144 /* (fddi-sink-total...bits - fddi-sink..total _bits-aE8J) /*
145 /* op...sim_tinleo); *

146 op...stat...global....rite (m..delay...gshandle, fddl _sink-accum-delay
147 / fddi-sink-total...pkts):
148 op-.stat-.global...write (In_delay...gsha,,dle...a[0J,
149 fddi _sink_accum...delay~aEOJ / fc _sink-total _pkts...a[0]):
150 op-stat...global...write (m..delay...gshi :le~a(1),
151 fddi-..sink-accum...delay...a~lJ / foGl-sink-total _pkts-a[1J);
152 op...stat...global...write (ni~delay-..gshandle_a[2].
153 fddi _sink...accum..delay...a[2) / fddi_sink-total _pkts~a[2]):
154 op...stat..global~write (m..delay-.gshandle~a[3).
155 fddl...sink..accum...delay...a[3J / fddi~sink..total...pkts...a[3]);
156 op~stat...global~write (m..delay...gshandle...aC4].
157 fddi _slnk..accum..delay..a[4) / fddi..sink-total _pkts...a[43))
158 op..stat...global...write (m...delay~..gshandle...aES],
159 fddi..sink...accum...delay...aESJ / fddi_sink-total _pkts...a[S]);
160 op..stat...global~write (In_delay...gshandle..a(6),
161 fddi..sink_accum..delay...aE6J / fddi _sink-total _pkts~aC6]);

187

162 op..stat..globalwrite (ni..delay...gshandle....a7J.
163 fddi..slnk-.accuni..delay...a[7J / fddi~sink..total...pkts...a[7J);
164 op~stat~global _write (mi..delay..gshandle...a[8).
165 fdd1...sink..accum1..delay...a[BJ / fddi...slnk..total-pkts...a[BJ):

166 /* 30JAN94: gather all asynch stats into one figure */
167 op...stat..global...wrlte (m...delay...gshandle...a(9J.
168 (fddi..slnk..accum...delay...a[0) + fddi~sink...accum~delay...a(1) +
169 fddi-slnk...accum...delay-.a[2J + fddi~slnk.accum...delay..a[3] +
170 fdd1...sink..accumI..delay...aE4J + fddi~sink.accum-..delay...aE5J +
171 fddi-.sink...accum...delay-.a[6J + fddl...slnk...accum-.delay..a[71))
172 (fddi-slnk...total-.pkts...a[O) + fddi-sink.total-.pkts...a~l) +
173 fddi-sink...total-pkts-.a[2J + fddi...sink...total-.pkts-.a[3) +
174 fddi..sink...total...pkts...a[4J + fddi...sink-total-pkts...aC5J +
175 fddi...sink-.total...pkts..a[6J + fddi-sink-.total-.pkts-a[71)));
176
177 1* (fddi-sink..acculll..delay -fddi~sink..accum~delay~aC8]))/

118 /* (fddi _sink-total...pkts -fddt...sink...total...pkts...a[8J)): *
1791

180 /* also record actual delay values *

181 op..stat~global..write (ete...delay~gshandle, delay):
182 op...stat-..global..write (ete..delay...gshandle..a~pri-setj. delay);

183

184 /*blocking after enter executives of unforced state.
185 F'SMEXIT (1,fddi..sink..mult)

186 /*state (DISCARD) exit executives ~
187 FSM_.STATZ_EXITUNFORCED (0. state0..exit-exec. "DISCARD*)
188
189

190 /*state (DISCARD) transition processing
191 FSM..INITCOND (END...OF..SIM)
192 FSM_DFLT_COND
193 FSM_TEST_LOGIC (*DISCARD*)

194 FSM_TRANSIT_SWITCH
195 1
196 FSM_CASE...TRANSIT (0, 1. statel-enter-exec. ;
197 FSM_CASETRANSIT (1. 0. state0_enter_exec, :
1981
199 /*--*

200 /~state (STATS) enter executives **I
201 FSMSTATEENTER_UNFORCED (1, statel..enter~exec, "STATS*)
202

2M8 /* At end of simulation. scalar performance statistics ~
204 /* and input parameters are written out. *

205 /* Only one station needs to do this *
206 if (!fddi...sink..scalar...write)
207(
208 /* set the scalar write flag *

209 fddi_sink...scalar...write - 1;
210 op...stat-.scalar...write ("Mean End-to-End Delay (sec.).
211 Priority 10. fddi...sink...accum...delay...a[OJ
212 fddi...sink...total...pkts...a[OJ):
213 op...stat...scalar....write (*Mean End-to-End Delay (sec.),
214 Priority 20. fddi...sink-accun-delay...a[1)
215 fddi-sink...total...pkts...a(J):
216 op-.stat...scalar_write (eMean End-to-End Delay (sec.).
217 Priority 30, fddi-.sink-accum...delay...a[2)
218 fddi-sink...total~pkts..aE2J):
219 op...stat-scalar...write (*Mean End-to-End Delay (sec.).
220 Priority V. fddi...sink-..accunL-delay...a[3J
221 fddL~sink..total...pkts...a(3J);
222 op...stat-..scalar...write ("Mean End-to-End Delay (sec.).
223 Priority 5% fddi..sink-accum...delay...a[4J
224 fddi _sink-total...pkts...a[4J):
225 op..stat..scalar...write (wMean End-to-End Delay (sec.).
226 Priority 60. f'ddi..sink...accun~delay...a(5J
227 fddL-sink...total~pkts...a[5J):
228 op...stat...scalar...write (OMean End-to-End Delay (sec.).
229 Priority 78. fddi..sink...accun~delay...a[6J
230 fddi-sink_total...pkts...a[6J);
231 op-.stat...scalar...write (eMean End-to-End Delay (sec.),
23 Priority 8., fddi..sink-.accunm.delay...a(7J
233 fddi-sink-total...pkts..a[7J);
234 op...stat-scalar...write (OMean End-to-End Delay (sec.).
235 Asynchronous". (fddi-.sink...accum...delay -

236 fddi...sink..accum...delay..a[8J) / (fddi-sink-total...pkts-
237 fddi..sink...tota1...pkts..a[SJ)):

238 /* (fddi..sink...accum...delay-a[0J + fddi..sink..accum..Aelay...a[lJ +~ *
239 /* fddi _sink...accuni..delay...aE2J + fddi...sink..accum..delay...a[3J + *
240 /* fddi _sink...accum...delay...a[4J + fddi~sink...accum...delay...a[5] + *
241 /* fddi _sink-accum...delay...a[6J + fddi...sink..accum...delay...a(71))I
242 /* (fddi _sink...total...pkts...a(0J + fddi-sink...total...pkts...a~l) + *
243 /* fddi _sink-total...pkts...a(2J + fddi...sink...total...pkts...aE3) +
244 /* fddi...sink-total-..pkts...a[4) + fddi-sink...total-.pkts...a[5) + *
245 1* fddi _sink...total...pkts...aE6J + fddi...sink..total...pkts...a[7J)); *

246 op...stat..scalar_write (wMean End-to-End Delay (sec.),
247 Synchronous% fddi~sinkcaccum..delay...a[8]
248 fddi-sink_total...pkts...aEB);

1899

249 op-.stat...scalar....write ('Mean End-to-End Delay (sec.). Totala,
250 fddi-.sink...accum...delay / fddLsiflk-total_pkts);
251 op...stat...scalar-write (*Throughput (bps), Priority 1'.
252 fddi...sink..total...bits...a[OJ / op-..sim...time ()):
253 op...stat...scalar...write ('Throughput (bps). Priority 2'.
254 fddi..sink_total_bits...a~lJ / op...sim...time ());
255 op...stat,..scalar...write (wThroughput (bps), Priority 3'.
256 fddi-.sink..total...blts..a[2J / op,..sim-..time ());
257 op..stat...scalar...write (*Throughput (bps). Priority 4',
258 fddi...sink...total...bits-..a[3J / op...slm..time ());
259 op...stat..scalar...write (*Throughput (bps). Priority 5'.
260 fddi...sink-.total-blts...aE4J / op-.sini-.time M):

261 op...stat..scalar...write (*Throughput (bps). Priority 6'.
262 fddi-.sink...total-bits...aC5J / op...sim...time (0);
263 op...stat..scalar...write ('Throughput (bps), Priority 7'.
264 fddi,..sink..total...bits...a(6) / op...sim-time 0);
265 op...stat...scalar...write (*Throughput (bps). Priority 8'.
266 fddi-sink...total...blts..aC7J I op...slm..time 0);
267 op...stat~..scalar..write (*Throughput (bps). Asynchronous'.
268 (fddi...sink...total-bits - fddi...sink_total _bits...a[8))I
269 op...sim..time M):

270 /* (fddi...sink...total..bits...a[O) + fddi~sink...total...bits...a(1] + *
271 /* fddi _slnk.total...bits...aE2J + fddi _sink...total-.bits...a[3J + *
272 /* fddi _sink-.totab..bits...a[4J + fddi...sink-total...bits...a[5) + *
273 /* fddl...sink_total...bits..a[6J +- fddi...sink...total...bits...a[71))/*
274 /* op...sim_time 0): *I

275 op...stat_scalar_write ('Throughput (bps). Synchronous'.
276 fddi-..sink..total...bits...a(BJ / op...sim...time ()):
271 op..stat...scalar...write ('Throughput (bps). Total'.
278 fddi~sink..total_bits / op...sini..time ():;
279 op...stat..scalar...write ('Peak End-to-End Delay (sec.). Priority
280 1'. fddi...sink..peak...delay...a[OJ);
281 op,..stat...scalar...write ('Peak End-to-End Delay (sec.). Priority
282 2'. fddi _sink...peak..delay...a[l.);
283 op~stat..scalar...write ('Peak End-to-End Delay (sec.). Priority
284 3'. fddi _sink...peak..delay...aE2]);
285 op...stat_scalar_write ('Peak End-to-End Delay (sec.). Priority
286 4'. fddi..sink-peak-..delay...a[3]):
287 op...stat-.scalar...write ('Peak End-to-End Delay (sec.), Priority
288 5'. fddi...sink...peak.delay...aE4J);
289 op~stat...scalar...write ('Peak End-to-End Delay (sec.). Priority
290 6'. fddi-.slnk-peak...delay...aCS));
291 op...stat...scalar...write ('Peak End-to-End Delay (sec.). Priority
292 7', fddi...sink-peak...delay...a[6));
293 op~stat...scalar...write ('Peak End-to-End Delay (sec.). Priority
294 8'. fddi _sink...peak...delay...aC7]);

190

295 fpvstat-scalar-write (*Peak End-to-End Delay (sec.).
296 Synchronous". fddl_sinkpeak_delay.a[8]);
297 op-stat_scalarwrite (OPeak End-to-End Delay (sec.). Overall.
298 fddi_sink-peak-delay);

299 /* Write the TTRT value for ring 0. This preserves */
300 /* the old behavior for single-ring simulations. */
301 op-stat-scalar-write (*TTRT (sec.) - Ring O'.fddl_t_opr
302 CO);

303 /* 12JAN94: obtain offered load information from the Environment */
304 /* file; this will be used to provide abscissa information that *1
305 /* can be plotted in the Analysis Editor (see "fddi_sink" STATS */
306 I* state. To the user: It's your Job to keep these current in *I
307 /* the Environment File. -Nix */
308 opIma_simnattr.get (OPCIMADOUBLE. "total_offered_load".
309 &OfferedLoad):
310 oplma_simnattr.get (OPCIMADOUBLE. "asynchoffered_load".
311 &AsynchOfferedLoad);
312

313 /* 12JAN94: write the total offered load for this run */
314 op-statscalarwrite (*Total Offered Load
315 (Mbps)',OfferedLoad);
316 op_stat_scalar_write ("Asynchronous Offered Load (Mbps)W.
317 AsynchOfferedLoad);
318)
319

320 /** blocking after enter executives of unforced state. **/
321 FSMEXIT (3.fddi_sink-mult)

322 /* state (STATS) exit executives **/
323 FSM_STATEEXIT_UNFORCED (1, statelexit_exec. "STATS")
324
325

326 /** state (STATS) transition processing **
327 FSM_TRANSIT_MISSING ("STATS')
328 /* --*/

329 /* state (INIT) enter executives **/
330 FSM_STATEENTERFORCED (2, state2_enter-exec, "INIT')
331
332 /* get the gshandles of the global statistic to be obtained */
333 /* 20JAN94: set array format */
334
335 thru-gshandle-a[O] - opstatglobal-reg ('pri 1 throughput
336 (bps)");

191

337 thru-.gshandle aC1J - op..stat...global~reg ('pri 2 throughput
338 (bps)');
339 thru..gshandle...a[2J - op...stat-.global...reg ("pri 3 throughput
340 (bps)a):
341 thru...gshandle-a[3J - op...stat...global-reg ('pri 4 throughput
342 (bps)u);
343 thru...gshandle-.a[4] - op..stat...global~reg (Opri 5 throughput
344 (bps)a);
345 thru...gshandle-.a[SJ - op...stat...global-reg (Opri 6 throughput
346 (bps)*);
347 thru...gshandle-a(6] - op...stat...global...reg ('pri 7 throughput
348 (bps)*);
349 thru...gshandle..a[7) - op...stat...global...reg ('pri 8 throughput
350 (bps)*);
351 thru...gshandle-.a[8J - op...stat...global-reg (*synch throughput
352 (bps)*);
353 thru...gshandle...aE9J - op...stat...global-reg ('async throughput
354 (bps)');
355 thru...gshandle - op...stat...global~reg ('total throughput (bps)'):
356 m-.delay...gshand'ie..a(0J - op-.stat...global~reg ('pri 1 mean delay
357 (sec.)');
358 m...delay...gshandle...a(1J - op...stat...global~reg ('pri 2 mean delay
359 (sec.)*);
360 mjdelay...gshandle...a[2] - op...stat..global-.reg ('prl 3 mean delay
361 (sec.)');
362 m-delay..gshandle...aE3J - op...stat...global-reg ('prl 4 mean delay
363 (sec.)');
364 m...delay...gshandle...a[4J - op...stat..global-reg ('pri 5 mean delay
365 (sec.)');
366 m...delay..gshandle...a[S) - op...stat...global~reg ('prl 6 mean delay
367 (sec.)');
368 m~delay...gshandle...af6] - op...stat...global...reg ('pri 7 mean delay
369 (sec.)');
370 m..delay...gshandle...a[7] - op..stat...global...reg ('pri 8 mean delay
371 (sec.)');
372 m..delay...gshandle...a[8] - op...stat...global..yeg ('synch mean delay
373 (sec.)'):
374 mjdelay...gshandle..aE9J op...stat...global...reg ('async mean delay
375 (sec.)'):
376 m..delay...gshandle - op...stat..global-reg ('total mean delay
377 (sec.)*);
378 ete_delay...gshandle...a[0) - op..stat...global~reg ('prl 1 end-to-end
379 delay (sec.)'):
380 ete_delay..gshandle...a~l) - op...stat...global...reg ('prl 2 end-to-end
381 delay (sec.)");
382 ete_delay..gshandle...a[2J - op...stat...global~reg ('pri 3 end-to-end
383 delay (sec.)');
384 ete_delay...gshandle...a[3] = op...stat...global...reg ('pri 4 end-to-end
385 delay (sec.)');

192

386 etejdelay...gshandle...a[41 - op...stat...global~reg (Oprl 5 end-to-end
387 delay (Sec.)'):
388 ete..delay...gshandle...a[5) - op...stat...global...reg ('pri 6 end-to-end
389 delay (sec.)*):
390 ete...delay...gshandle~aC6J - op...stat...global-reg ('prl 7 end-to-end
391 delay (sec.)'):
392 ete...delay..gshandle...a[7] - op...stat-.global...reg ('pri 8 end-to-end
393 delay (sec.)O);
394 ete...delay...gshandle...aE8J - op-stat...global...reg ('synch end-to-end
395 delay (sec.)');
396 ete..delay...gshandle -op...stat...global-reg ("total end-to-end
397 delay (sec.)O):
398)

399 /*state (INIT) exit executives ~
400 FSMSTATEEXITFORCED (2. state2...exlt...exec. 'INIT')
401
402

403 /*state (INIT) transition processing ~
404 FSM_INIT_COND (END...OF_..SIM)
405 FSM_OFLL.COND
406 FSM_TESTLOGIC ('INIT')

407 FSM_TRANSIT_SWITCH
408
409 FSI4_CASE_jRAIIS1T (0. 1. statel-enter...exec, ;
410 FSM_CASE_TRANSIT (1. 0. stateO...enter-.exec, ;
411
412 /*--*

413

414 FSM_EXIT (2.fddi-sink-mult)
415

416 void
417 fddi _sink_mult-svar (prs...ptr.var...name.var...p..ptr)
418 fddi _sink-mult-state *prs-ptr;
419 char *var name, **var~pptr:
420

421 FIN (fddi _sink-mult-svar (prs...ptr))

422 *var-pptr - VOS...NIL;
423 if (Vos_String-.Equal ('thru...gshandle' . var_name))
424 *var-pptr -(char *) (&prs-.ptr->sv-.thru..gshandle);
425 if (Vos_Strlng...Equal ('m...delay...gshandle' . var...name))
426 *var-_p..ptr - (char *) (&prs...ptr->sv-m...delay..gshandle);
427 if (Vos_Strlng...Equal ('ete...delay...gshandle' , var...name))
428 *var-p...ptr - (char *) (&prs...ptr->sv-ete...delay...gshandle);

193

429 if (Vos_String-Equal (Othru...gshandle..a' , var_name))
430 *var~pptr - (char *) (prs...ptr->sv...thru~gshandle_a):
431 if (Vos..String...Equal Vam..delay...gshandle...a' . var~name))
432 *var~pptr - (char *) (prs~ptr->sv...m..delay-..gshandle~a);
433 if (VosString...Equal UOete-..delay...gshandle_a' , var...name))
434 *var~pptr - (char *) (prs~ptr->sv-ete-delay...gshandle...a);
435 FO(JT;
436

437 void
438 fddi _sink_mult-diag (
439
440 double delay, creat-time:
441 Packet* pkptr;
442 int src~addr, my~addr;
443 Ici'* from..mac..jci..ptr:
444 double fddi-sink-.ttrt;

445 FIN (fddi-sink-mult_diag 0)
446 FOUT;
447

448 void
449 fddi _sink_mult-terminate (
450
451 double delay. creat...time;
452 Packet* pkptr;
453 int src..addr, my...addr;
454 Ici* from-mac...iciptr;
455 double fddi.-.sink...ttrt;

456 FIN (fddi-.sink..mult-..terminate M)
457 FOUT;
458

459 Compcode
460 fddi _sink_mult-imit (pr-.state...pptr)
461 fddl _sink-mult-state **pr-state-pptr'
462 1
463 static VosL..CmObtype obtype - OPC_NIL:

464 FIN (fddi _sink_ýmult_1nit (pr,-.state-..pptr))

465 if (obtype -- OPCNIL)
466
467 if (Vos-..Catmem...Register (*proc state vars (fddi _sink_mult)".
468 slzeof (fddL-sink-mult-state), Vos...Nop, &obtype) -

469 VOSC._.FAILURE)
410 FRET (OPCCOMPCODE_..FAILURE)
471

194

472 if ((*pr...state-pptr - (fddl..slnk_mult_state*) Vos...Catmem..Alloc
473 (obtype. 1) - OPC-.NIL)
474 FRET (OPCCOMPCODEFAILURE)
475 else
476
477 (*pr state-pptr)->current-block -4;

478 FRET (OPC...COMPCODE-SUCCESS)
479
480

195

APPENDIX H. ENVIRONMENT FILE FOR

50-STATION MULTICAST CAPABLE FDDI LAN

fddi50mult.ef
sample simulation configuration file for fddi example model
50 station network with multiple addressing capability

#*** Attributes related to loading used by "fddigen *

station addresses
..fO.mac.stationaddress: 0
..fl.mac.stationaddress: I
..f2.mac.station-address: 2
..f3.mac.station-address: 3
..f4.mac.stationaddress: 4
..fS.mac.station-address: 5
..f6.mac.station-address: 6
..f7.mac.station-address: 7
..fB.mac.station-address: 8
..f9.mac.station-address: 9
..fIO.mac.station-address: 10
..fll.mac.station-address: 11
..f12.mac.station-address: 12
..f13.mac.station-address: 13
..f14.mac.station-address: 14
..fl5.mac.stationaddress: 15
..f16.mac.stationaddress: 16
..f17.mac.station-address: 17
..f18.mac.station-address: 18
..fl.mac.station-address: 19
..f20.mac.stationaddress: 20
..f21.mac.station-address: 21
..f22.mac.station-address: 22
..f23.mac.station-address: 23
..f24.mac.station-address: 24
..f25.mac.station-address: 25

..f26.mac.stationaddress: 26
..f27.mac.stationaddress: 27
..f28.mac.stationaddress: 28
..f29.mac.station-address: 29
..f30.mac.stationaddress: 30
..f31.mac.stationaddress: 31
..f32.mac.station-address: 32
..f33.mac.stationaddress: 33

196

*.*f34.mac.station-address: 34
*.*f35.mac.station-address: 35
*.*f36.mac.station-address: 36
*.*f37.mac.stationaddress: 37
*.*f38.mac.station-address: 38
**f39.mac.stationaddress: 39
**f40.mac.station-address: 40
**f41.mac.station-address: 41
**f42.mac.station-address: 42
**f43.mac.stationaddress: 43
**f44.mac.stationaddress: 44
**f45.mac.station-address: 45
**f46.mac.station-address: 46
**f47.mac.station-address: 47
**f48.mac.station-address: 48
**f49.mac.station-address: 49

..*.mac.ringId :0

Range number of stations that may recieve this packet if more
than one is designated (model defaults are both 1)
Note that the code does not allow the originating station to
address a packet to itself, so max.num-addees is less than
the number of stations.
"**llc_src.min num addees : 1"**llcsrc.max num addees" : 1

destination addresses for random message generation
• **llc-src.low dest address : 0
"*.*.llc-src.high dest address*: 49

"*.fO.1lc-src.low dest address" : 0
**.fO.llc-src.high dest address" : 49

range of priority values that can be assigned to packets; FDDI
standards allow for 8 priorities of asynchronous traffic. MIL3's
original model is modified to allow each station to generate
multiple priorities, within a specified range. (Note that while
research literature refers to asynchronous priorities ranging
from 1 to 8, the corresponding numbering here is 0 to 7, in
keeping with the C language array element numbering convention.)
"*.*.llcsrc.high pkt priority' : 7
"*.*.llcsrc.low pkt priority* : 0

arrival rate(frames/sec), and message size (bits) for random
message generation at each station on the ring.
"*.*.*.arrival rate" : 750
"*.*.*.mean pk length" : 1000

These are the synchronus transmitters

197

"*.fO.*.arrlval rate' 6000
"*.fO.*.mean pk length* 512
"*.fSo*.arrival rate' 6000
•*.f5.*.mean pk length* 512
"*.flO.*.arrival rate : 6000
"*.flO.*.mean pk length' : 512
"*.flS.*.arrival rate' : 6000
"*.flS.*.mean pk length* : 512
"*.f20.*.arrlval rate' : 60000
"*.f20.*,mean pk length* : 512
•*.f25.*,arrival rate' : 6000
"*.f25.*.mean pk length* : 512
"*.f30.*.arrival rate' : 6000
"*.f30.*,mean pk length" : 512
"*.f35.*,arrlval rate' : 6000
"*.f35.*.mean pk length' : 512
"*.f40.*.arrival rate" : 6000
"*.f40.*.mean pk length' : 512
"*.f45.*,arrival rate' : 60000
"*.f45.*.mean pk length' : 512

12DEC93: total offered load is the sum of all stations'
loads (Mbps). Compute this by hand; this value is used in
the sink process model for generating scalar plots where
offered load is the abscissa.
totaloffered-load 60.72
asynchofferedload 30.00

set the proportion of asynchronous traffic
a value of 1.0 indicates all asynchronous traffic
"0*.*.*.async-mix: 1.0

"*.fO.*.async_mix' 0.0
"*.f5.*.async_mix" 0.0
"*.flO.*.asyncmix' : 0.0
"*.fl5.*.async_mix' : 0.0
"*.f20.*.async_mix" : 0.0

".f25.*.asyncmix" : 0.0
"*.f30.*.async-mix* : 0.0
"*.f35.*.async_mix" : 0.0
"*.f40.*.async-mix" : 0.0
"*.f45.*.async-mix" : 0.0

#*** Ring configuration attributes used by "fdd1_mac" *

allocate percentage of synchronous bandwidth to each station
this value should not exceed 1 for all stations combined; OPNET
does not
enforce this; 01FEB94: this must be less than 1; see equation below
"*.*.mac.sync bandwidth' : 0.0

198

"*.fO.mac.sync bandwidth" : .09358
.fS.mac.sync bandwidth : .09358

"*flO.mac.sync bandwidth" : .09358
"*fl5.mac.sync bandwidth' : .09358
"*.f20.mac.sync bandwidth' : .09358
"*.f25.mac.sync bandwidth' : .09358
"*.f30.mac.sync bandwidth' : .09358
"*.f35.mac.sync bandwidth' : .09358
"*.f40.mac.sync bandwidth' : .09358
"*.f45.mac.sync bandwidth" : .09358

Target Token Rotation Time (one half of maximum
synchronous response time)
"*.*.mac.TReq" : .0107

Index of the station which initially launches the token
"spawn station': 0

Delay incurred by packets as they traverse a station's
ring interface (see Powers. p. 351 for a discussion
of this (Powers gives lusec, but 60.0e-08 agrees with
Dykeman & Bux)
stationlatency: 60.0e-08

Propagation Delay separating stations on the ring.
propdelay: 5.085e-06

Simulation related attributes

Token Acceleration Mechanism enabling flag.
It is reccomended that this mechanism be enabled for most
situations
accelerate-token: I

seed: 10

Run control attributes

duration: .5
verbosesim: TRUE
upd-int: .1
os_file: fddi5Omult
ovfile: fddiSOmult

Opnet Debugger (odb) enabling attribute
debug: TRUE

199

APPENDIX I. CONVENTIONS

One of the purposes of this report is that it will be used both as a teaching tool and

a springboard for future researchers and assessors of fiber optic network simulations

implementing OPNET. Throughout the writing of this reportM the author has kept these

goals in sight and the resulting narrative contains technical stylistic conventions in keeping

with the projected use of this material in a teaching, reference, and research environment

These conventions, implemented in the narrative portion of this report only, are briefly

described here.

All excerpted programming code fragments are isolated on their own lines within the

text and highlighted by a standard san-serif font. Variable names, function names,

and names of programming objects referred to within the text of the report are also

highlighted in this manner, with a standard san-serif font. Messages from the

computer or responses to be made to computer queries are set off in double quotes and a

"bold standard san-serif font." Single keystrokes are highlighted in capitalized

italics, (e.g. <CTRL+S>), while parameters are also set off in the same manner (e.g.

<number of nodes>).

200

APPENDIX J. GLOSSARY

BONeS Block Oriented Network Simulator

CDL Common Data Link

DSPO Defense Support Project Office

Environment file A command file containing descriptors and values

utilized by a system to define the operating

parameters. Sometimes this file is referrd to as the

"configuration file."

FDDI LAN Fiber Distributed Data Interface Local Area Network

MAC Medium Access Control

OPNET Optimized Network Engineering Tool

THT Token Holding Timer

TRT Token Rotation Timer

TTRT Target Token Rotation Time

201

LIST OF REFERENCES

Defense Support Projea Office, CDL System Descwion Docwuient for Common Data
link (CDL), 1993.

Dykeman, D., and Bux, W., "Analysis and Tuning of the FDDI Media Access Control
Protocol," IEEE Journal on Selected Areas in Commications, v. 6, no. 6, pp. 997-
1010, July 1988.

Jain, Raj, "Performance Analysis of FDDI Token Ring Networks: Effect of Parameters
and Guidelines for Setting TTRT," IEEE LTS, v. 2, no. 2, pp. 16-22, May 1991.

MIL 3, Inc., OPNET Modeler,(usees manual in I I volumes), 3400 International Drive
NW, Washington D.C. 20008,1993.

Powers, John P., An InJroa&cdon to Fiber Optc Systems, Richard D. Irwin, Inc., and
Aksen Associates, Inc., 1993.

Shukla, Shridhar B., "Interfacing Remote Platforms Using the Common Data Link -
Requirements and Stuctural Alternatives," report submitted to CDL Project Manager,
Defense Support Project Office, December 1993.

Schenone, Aldo B., Mod4lmg and Simulation of a Fiber Distributed Data Interface Local
Area Network, Master's Thesis, Naval Postgraduate School, Monterey, California,
September 1993.

Stallings, William, Data and Computer Communications, Third Edition, Macmillan
Publishing Company, 1991.

Stallings, William, Local and Metropolitan Area Networks, Fourth Edition, Macmillan
Publishing Conqmpy, 1993.

Tant, F., and others, "Analyzing FDDI-Based Networks Using BONeS," SPIE, v. 1577,
pp. 54-65, 1991.

202

INITIAL DISTRIBUTION LIST

No. Cop=e

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5 101

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Shridhar Shukla, Code EC/Sh 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5 121

5. Professor Gilbert Lundy. Code CS/Ln 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-511

6. Professor Paul Moose, Code EC/Me
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

7. Mark Russon, UNISYS
Mail Station F2-G 14
640 North 2200 West
Salt Lake City, UT 84116-2988

203

8. CDL Program Manager
Defense Support Project Office

Washington D.C. 20330-1000

9. LT Ernest E. Nix, Jr., USN
502 Paris View Dr.

Travelers Rest, SC 29690

204

